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PREFACE

Our text is designed for use in a first undergraduate course in linear algebra.
Because linear algebra provides the tools for dealing with problems in fields
ranging from forestry to nuclear physics, it is desirable to make the subject
accessible to students from a variety of disciplines. For the mathematics
major, a course in linear algebra often serves as a bridge from the typical
intuitive treatment of calculus to more rigorous courses such as abstract
algebra and analysis. Recognizing this, we have attempted to achieve an
appropriate blend of intuition and rigor in our presentation.

NEW FEATURES IN THIS EDITION

* Evenly Paced Development: In our previous edition, as in many other texts,
fundamental notions of linear algebra—including linear combinations,
subspaces, independence, bases, rank, and dimension—were first intro-
duced in the context of axiomatically defined vector spaces. Having easily
mastered matrix algebra and techniques for solving linear systems, many
students were unable to adjust to the discontinuity in difficulty. In an
attempt to eradicate this abrupt jump that has plagued instructors for years,
we have extensively revised the first portion of our text to introduce these
fundamental ideas gradually, in the context of R". Thus linear combinations
and spans of vectors are discussed in Section 1.1 and subspaces and bases
are introduced where they first naturally occur in the study of the solution
space of a homogeneous linear system. Independence, rank, dimension, and
linear transformations are all introduced before axiomatic vector spaces are
defined. The chapter dealing with vector spaces (Chapter 3) is only half its
length in the previous edition, because the definitions, theorems, and proofs
already given can usually be extended to general vector spaces by replacing
“vectors in R™ by “vectors in a vector space ¥.” Most of the reorganization
of our text was driven by our desire to tackle this problem.



* Early Geometry: Vector geometry (geometric addition, the dot product,
length, the angle between vectors), which is familiar to many students from
calculus, is now presented for vectors in R” in the first two sections of
Chapter 1. This provides a geometric foundation for notions of linear
combinations and subspaces. Instructers may feel that students will be
uncomfortable working immediately in R". It is our experience that this
causes no difficulty; students can compute a dot product of vectors with five
components as easily as with two components.

+ Application to Coding: An application of matrix algebra to binary linear
codes now appears at the end of Chapter 1.

+ MATLAR: The professional PC software MATLAB is widely used for
computations in linear algebra. Throughout the text, we have included
optional exercises to be done using the Student Edition of MATLAB. Each
exercise set includes an explanation of the procedures and commands in
MATLAB needed for the exercises. When performed sequentially through-
out the text, these exercises give an elementary tutorial on MATLAB.
Appendix D summarizes for easy reference procedures and commands used
in the text exercises, but it is not necessary to study Appendix D before
plunging in with the MATLAB exercises in Section 1.1. We have not written
MATLAB .M-files combining MATLAB’s commands for student use.
Rather, we explain the MATLAB commands and ask students to type a
single line, just as shown in the text, that combines the necessary com-
mands, and then to edit and access that line as necessary for working a
sequence of problems. We hope that students will grasp the commands, and
proceed to write their own lines of commands to solve problems in this or
other courses, referring if necessary to the MATLAB manual, which is the
best reference. Once students have had some practice entering data, we do
supply files containing matrix data for exercises to save time and avoid
typos in data entry. For example, the data file for the MATLAB exercises for
Section 1.4 is FBC1S4.M, standing for Fraleigh Beauregard Chapter 1
Section 4. The data files are on the disk containing LINTEK, as explained in
the next item.

+ LINTEK: The PC software LINTEK by Fraleigh, designed explicitly for this
text, has been revised and upgraded and is free to students using our text.
LINTEK is not designed for professional use. In particular, matrices can
have no more than 10 rows or columns. LINTEK does provide some
educaiional reinforcements, such as step-by-step execution and quizzes,
that are not available in MATLAB. All information needed for LINTEK is
supplied on screen. No manual is necessary. The matrix data files for
MATLAB referred to in the preceding item also work with LINTEK, and
are supplied on the LINTEK disk. Many optional exercise sets include
problems to be done using LINTEK.
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FEATURES RETAINED FROM THE PREVIOUS EDITION

Linear Transformations: In the previous edition, we presented material on
linear transformations throughout the text, rather than placing the topic
toward the end of a one-semester course. This worked well. Our students
gained much more understanding of linear transformations by working
with them over a longer period of time. We have continued to do this in the
present edition.

Eigenvalues and Eigenvectors: This topic is introduced, with applications, in
Chapter 5. Eigenvalues and eigenvectors recur in Chapters 7, 8, and 9, so
students have the opportunity to continue to work with them.

Applications: We believe that if applications are to be presented, it is best to
give each one as soon as the requisite linear algebra has been developed,
rather than deferring them all to the end of the text. Prompt work with an
application reinforces the algebraic idea. Accordingly, we have placed
applications at the ends of the chapters where the pertinent algebra is
developed, unless the applications are so extensive that they merit a chapter
by themselves. For example, Chapter i concludes with applications to
population distribution (Markov chains) and to binary linear codes.

Summaries: The summaries at the ends of sections have proved very
convenient for both students and instructors, so we continue to provide
them.

Exercises: There are abundant pencil-and-paper exercises as well as com-
puter exercises. Most exercise sets include a ten-part true-false problem.
That exercise gives students valuable practice in deciding whether a
mathematical statement is true, as opposed to asking for a proof of a given
true statement. Answers to odd-numbered exercises having numerical
answers are given at the back of the text. Usually, a requested proof or
explanation is not given in the answers, because having it too readily
available does .not seem pedagogically sound. Computer related exercises
are included at the end of most exercise sets. Their appearance is signaled
by a disk logo.

Complex Numbers: We use complex numbers when discussing eigenvalues
and diagonalization in Chapter 5. Chapter 9 is devoted te linear algebra in
C". Some instructors bemoan a restriction to real numbers throughout most
of the course, and they certainly have a point. We experimented when
teaching from the previous edition, making the first section of the chapter
on complex numbers the first lesson of the course. Then, as we developed
real linear algebra, we always assigned an appropriate problem or two from
the parallel development in subsequent sections on C". Except for discuss-
ing the complex inner product and conjugate transpose, very little extra
time was necessary. This technique proved to be feasible, but our students
were not enamered with pencil-and-paper computations involving complex
numbers.



* Dependence Chart: A dependence chart immediately follows this preface,
and is a valuable aid in constructing a syllabus for the course.

SUPPLEMENTS

» Imstructoi’s Solutions Manual: This manuai, prepared by the authors, is
available to the instructor from the publisher. It contains complete solu-
tions, including proofs, for all of the exercises.

+ Student’s Solutions Manual: Prepared by the authors, this manual contains
the coraplete solutions, including proofs, from the Instructor’s Solutions
Manual for every third problem (1, 4, 7, etc.) in each exercise set.

« LINTEK: This PC software, discussed above, is included with each copy of
the text.

« Testbank: The authors have created a substantial test bank. It is available to
the instructor from the publisher at no cost. Note that each multiple-choice
problem in the bank can also be requested as open-ended—that is, with the
choices omitted—as long as the problem still makes sense. Problems are
easily selected and printed using software by Fraleigh. We use this bank
extensively, saving ourselves much time—but of course, we made up the
problems!
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VECTORS, MATRICES, AND
LINEAR SYSTEMS

We have all solved simultaneous linear equations—for example,
2x+ y= 4
x—2y=-3

We shall call any such collection of simultaneous linear equations a linear
system. Finding all solutions of a linear system is fundamental to the study of
linear algebra. Indeed, the great practical importance of linear algebra stems
from the fact that linear systems can be solved by algebraic methods. For
example, a [inear equation in one unknown, such as 3x = 8, is easy to solve.
But the nonlinear equations x* + 3x = 1, x* = 100, and x — sin x = | are all
difficult to solve algebraically.

One often-used technique for dealing with a nonlinear problem consists of
linearizing the problem—that is, approximating the problem with a linear one
that can be solved more easily. Linearization techniques often involve
calculus. If you have studied calculus, you may be familiar with Newton’s
method for approximating a solution to an equation of the form f(x) = 0; an
example would be x — 1 — sin x = 0. An approximate solution is found by
solving sequentially several linear equations of the form ax = b, which are
obtained by approximating the graph of fwith lines. Finding an approximate
numerical solution of a partial differential equation may involve solving a
linear system consisting of thousands of equations in thousands of unknowns.
With the advent of the computer, solving such systems is now possible. The
feasibility of solving huge linear problems makes linear algebra currently one
of the most useful mathematical tools in both the physical and the social
sciences.

The study of linear systems and their solutions is phrased in terms of
vectors and matrices. Sections 1.1 and 1.2 introduce vectors in the Euclidean
spaces (the plane, 3-space, etc.) and provide a geometric foundation for our
work. Sections 1.3-1.6 introduce matrices and methods for solving linear
systems and study solution sets of linear systems.



2

CHAPTER 1

VECTORS, MATRICES, AND LINEAR SYSTEMS

1.1

VECTORS IN EUCLIDEAN SPACES

af i hogio ari $in Amaentiaao an 2% A

We all know the practicality of two basic arithmetic upmauuua—uauw}y,
adding two numbers and multiplying one number by another. We can regard
the real numbers as forming a line which is a one-dimensional space. In this
section, we will describe a useful way of adding two points in & plane, which is
a two-dimensional space, or two points in three-dimensional space. We will
even describe what is meant by n-dimensional space and define addition of
two points there. We will also describe how to multiply a point in two-, three-,
and n-dimensional space by a real number. These extended notions of
addition and of multiplication by a real number are as useful in #-dimensional
space for n > 1 as they are for the one-dimensional real number line. When
these operations are performed in spaces of dimension greater than one, it is
conventional to call the elements of the space vecters as well as peoints. In this
section, we describe a physical model that suggests the term vector and that
motivates addition of vectors and multiplication of a vector by a number. We
then formelly define these operations and list their properties.

Euclidean Spaces

Let R be the set of all real numbers. We can regard R geometrically as the
Euclidean line—that is, as Euclidean 1-space. We are familiar with rectangular
x,y-coordinates in the Euclidean plane. We consider each ordered pair (a, b)
of real numbers to represent a point in the plane, as illustrated in Figure 1.1.
The set of all such ordered pairs of real numbers is Euclidean 2-space, which
we denote by R?, and often call the plane.

To coordinatize space, we choose three mutually perpendicular lines as
coordinate axes through a point that we call the origin and label §, as shown in
Figure 1.2. Note that we represent only half of each coordinate axis for clarity.
The coordinate system in this figure is called a right-hand system because,
when the fingers of the right hand are curved in the direction required to rotate
the positive x-axis toward the positive y-axis, the right thumb points up the
z-axis, as shown in Figure 1.2. The set of all ordered triples (a, b, ¢) of real
numbers is Euclidean 3-space, denoted R®, and often simply referred to as
space.

Although a Euclidean space of dimension four or more may be difficult for
us to visualize geometrically, we have no trouble writing down an ordered
quadruple of real numbers such as (2, -3, 7, #) or an ordered quintuple such
as (0.3, 3, 2, —5, 21.3), etc. Indeed, it can be useful to do this. A household
budget might contain nine categories, and the expenses allowed per week in
each category could be represented by an ordered 9-tuple of real numbers.
Generalizing, the set R” of all ordered n-tuples (x,, x,, . . . , x,) of real numbers
is Euclidean n-space. Note the use of just one letter with consecutive integer
subscripts in this n-tuple, rather than different letters. We will often denote an
element of R? by (x,, x,) and an element of R® by (x;, x,, x;).

R

AR LY .

T R

=0
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I (a, b, ¢)
a, b)
b (
b
/ o
> X
0 . 7
X
FIGURE 1.1 FIGURE 1.2
Rectangular coordinates in the plane. Rectangular coordinates in space.

The Physical Notior of a Vector

We are accustomed to visualizing an ordered pair or triple as a point in the
plane or in space and denoting it geometrically by a dot, as shown in Figures
1.1 and 1.2. Physicists have found another very useful geometric interpreta-
tion of such pairs and triples in their consideration of forces acting on a body.
The motion in response to a force depends on the direction in which the force
1s applied and on the inagnitude of the force—that is, on how hard the force is
exerted. It is natural to represent a force by an arrow, pointing in the direction

HISTORICAL NOTE THE iDEA OF AN 7-DIMENSIONAL SPACE FOR n > 3 reached acceptance
gradually during the nineteenth century; it is thus difficult to pinpoint a first “invention™ of this
concept. Among the various early uses of this notion are its appearances in a work on the
divergence theorem by the Russian mathematician Mikhail Ostrogradskii (1801-1862) in 1836,
in the geometrical tracts of Hermann Grassmann (1809-1877) in the early 1840s, and in a brief
paper of Arthur Cayley (1821-1895) in 1846. Unfortunately, the first two authors were virtually
ignored in their lifetimes. In particular, the work of Grassmann was quite philosophical and
extremely difficult to read. Cayley’s note merely stated that one can generalize certain results to
dimensions greater than three “without recourse to any metaphysical notion with regard to the
possibility of a space of four dimensions.” Sir William Rowan Hamilton (1805-1865), in an 1841
letter, also noted that “it must be possible, in some way or other, to introduce not only triplets but
polyplets, so as in some sense to satisfy the symbolical equation

a=(a,a,...,a,)

a being here one symbol, as indicative of one (complex) thought; and a,, a,, . . . , a, denoting n real
numbers, positive or negative.”

Hamilton, whose work on quaternions will be mentioned later, and whe spent much of his
professional life as the Royal Astronomer of Ireland, is most famous for his work in dynamics. As
Erwin Shrodinger wrote, “the Hamiltonian principle has become the cornerstone of modern
physics, the thing with which a physicist expects every physical phenomenon to be in conformity.”



CHAPTER 1

VECTORS, MATRICES, AND LINEAR SYSTEMS

in which the force is acting, and with the length of the arrow representing the
magnitude of the force. Such an arrow is a force vector.

Using a rectangular coordinate system in the plane, note that if we
consider a force vector to start from the origin (0, 0), then the vector is
completely determined by the coordinates of the point at the tip of the arrow.
Thus we.can consider each ordered pair in R? to represent a vector in the plane
as well as a point in the plane. When we wish to regard an ordered pair as a
vector, we will use square brackets, rather than parentheses, to indicate this.
Also, we often will write vectors as columns of numbers rather than as rows,
and bracket notation is traditional for columns. Thus we speak of the point
(1, 2) in R? and of the vector [1, 2] in R”. To repiesent the point (1, 2) in the
plane, we make a dot at the appropriate place, whereas if we wish to represent
the vector[1, 2], we draw an arrow emanating from the origin with its tip at the
place where we would plot the point (1, 2). Mathematically, there is no
distinction between (1, 2) and [1, 2]. The different notations merely indicate
different views of the same member of R2. This is illustrated in Figure 1.3. A
similar observation holds for 3-space. Generalizing, each n-tuple of real

numbers can be viewed both as a point (x;, X, ..., Xx,) and as a vector
[x), X%, . . . , X,] in R". We use boldface letters such as a = [a,, a,], v = [v;, V), 3],
and x = [x,, Xx,, . . . , x,] to denote vectors. In written work, it is customary to

place an arrow over a letter to denote a vector, as in 3, v, and . The ith entry x;
in such a vector is the ith component of the vector. Even the real numbers in R
can be regarded both as points and as vectors. When we are not regarding a
real number as either a point or a vector, we refer to it as a scalar.

Two vectorsv=[v,,v,, ...,v Jandw=[w,w,, ... w,]areequalifn=m
and v; = w, for each i.

A vector containing only zeros as components is called a zero vector and
is denoted by 0. Thus, in R? we have § = [0, 0] whereas in R* we have 0 =
(0, 0, 0, 0].

When denoting a vector v in R” geometrically by an arrow in a figure, we
say that the vector is in standard position if it starts at the origin. If we draw an

X2 Xa
A A
2t .“’2) 21
1T 171 v=11,2]
! > X . >
0 1 ! 0 1 &
(a) (b)
FIGURE 1.3 ’

Two views of the same member of R (a) the point (1, 2); (b) the vector v = [1, 2].
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4 4
v Translated v
ol p
FIGURE 1.4 FIGURE 1.5
v translated to P. The vector sum F, + F,.

arrow having the same length and parallel to the arrow representing v but
starting at a point P other than the origin, we refer to the arrow as v translated
to P. This is illustrated in Figure 1.4. Note that we did not draw any coordinate
axes; we only marked the origin 0 and drew the two arrows. Thus we can
consider Figure 1.4 to represent a vector v in R%, R or indeed in R” for n = 2.
We will often leave out axes when they are not necessary for our understand-
ing. This makes our figures both less cluttered and more general.

Vector Algebra

Physicists tell us that if two forces corresponding to force vectors F, and F, act
on a body at the same time, then the two forces can be replaced by a single
force, the resultant force, which has the same effect as the original two forces.
The force vector for this resultant force is the diagonal of the parallelogram
having the force vectors F, and F, as edges, as illustrated in Figure 1.5. It 13
natural to consider this resultant force vector to be the sum F, + F, of the two
original force vectors, and it is so labeled in Figure 1.5.

HISTORICAL NOTE THE CONCEPT OF A VECTOR in its earliest manifestation comes from
physical considerations. In particular, there is evidence of velocity being thought of as a vector—a
quantity with magnitude and direction—in Greek times. For example, in the treatise Mechanica
by an unknown author in the fourth century B.c. is written: “When a body is moved in a certain
ratio (i.e., has two linear movements in a constant ratio to one another), the body must move in a
straight line, and this straight line is the diagonal of the parallelogram formed from the straight
lines which have the given ratio.” Heron of Alexandria (first century a.p.) gave a proof of this result
when the directions were perpendicular. He showed that if a point A moves with constant velocity
over a line 4B while at the same time the line AB moves with constant velocity along the parallel
lines AC and BD so that it always remains parallel to its original position, and that if the time 4
takes to reach B is the same as the time 4 B takes to reach CD, then in fact the point A moves along
the diagonal AD. R

This basic idea of adding two motions vectorially was generalized from velocities to physical
forces in the sixteenth and seventeenth centuries. One example of this practice is found as
Corollary 1 to the Laws of Motion in Isaac Newton’s Principia, where he shows that “a body acted
on by two forces simultansously will descrive the diagonal of a parallelogram in the same time as it
would describe the sides by those forces separately.”
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VECTORS, MATRICES, AND LINEAR SYSTEMS

We can visualize two vectors with different directions and emanating from
a point P in Euclidean 2-space or 3-space as determining a plane. It is
pedagogice!ly useful to do this for n-space for any n = 2 and show helpful
figures on our pages. Motivated by our discussion of force vectors above, we
consider the sur of two vectors v and w starting at a point P to be the vector
starting at P that forms the diagonal of the paiallelogram wiih a vertex at Pand
having edges represented by v and w, as illustrated in Figure 1.6, where we take
the vectors in R” in standard position starting at 0. Thus we have a geometric
understanding of vector addition in R". We have labeled as translated v and
translated w the sides of the parallelogram opposite the vectors v and w.

Note that arrows along opposite sides of the parallelogram point in the
same direction and have the same length. Thus, as a force vector, the
translation of v is considered to be equivalent to the vector v, and the same is
true for w and its translation. We can think of obtaining the vector v + w by
drawing the arrow v from 0 and then drawing the arrow w translated to start
from the tip of v as shown in Figure 1.6. The vector from 0 to the tip of the
translated w is then v + w. This is often a useful way to regard v + w. To add
three vectors u, v, and w geometrically, we translate v to start at the tip of wand
then translate w to start at the tip of the translated v. The sum u + v + w then
begins at the origin where u starts, and ends at the tip of the translated w, as
indicated in Figure 1.7,

The difference v — w of two vectors in R” is represented geometrically by
the arrow from the tip of w to the tip of v, as shown in Figure 1.8. Here v — wis
the vector that, when added to w, yields v. The dashed arrow in Figure 1.8
shows v — w in standard position.

If we are pushing a body with a force vector F and we wish to “double the
force”—that is, we want to push in the same direction but twice as hard—
then it is natural to denote the doubled force vector by 2F. If instead we want
to push the body in the opposite direction with one-third the force, we denote
the new force vector by —%F. Generalizing, we consider the product rv of a
scalar r times a vector v in R” to be represented by the arrow whose length is |r|
times the length of v and which has the same direction as v if r > 0 but the
opposite direction if 7 < 0. (See Figure 1.9 for an illustration.) Thus we have a
geometric interpretation of scalar multiplication in R"—that is, of multiplica-

tion of a vector in R by a scalar.
Translated v -

Translated v-

0

FIGURE 1.6 FIGURE 1.7
Representation of v + w in R". Representation of u + v + w in R",

g evie 35 R D
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X2

2v ¢ (2vy, 229)

2v

Uy 4

—y r 5712

Y. gl
it
le. FIGURE 1.8

|d. The vectorv — w.

d;
n,
18-

Wy

FIGURE 1.9
Computation of rv in R

Taking a vecior v = [v,, v,] in R? and any scalar r, we would like to be able to
contpute rv algebraically as an element (ordered pair) in R% and not just
represent it geometrically by an arrow. Figure 1.9 shows the vector 2v which
points in the same direciion as v but is twice as long, and shows that we have 2v
= [2¥,, 2v,]. It also indicates that if we multiply all components of v by —%, the
resulting vector has direction opposite to the direction of v and length equal to
1 the length of v. Similarly, if we take two vectors v = [v,, v,] and w = [w,, w,] in
R2 we would like to be able to compute v + w algebraically as an element
(ordered pair) in R? Figure 1.10 indicates that we have v + w = [v, + w,,
v, + w,]—that is, we can simply add corresponding components. With these
figures to guide us, we formally define some algebraic operations with vectors
in R~

DEFINITION 1. 1 VectorAigebra in R

Letv [vl, v2, L. ,,] and w = [w;, w,, . . ., w,] be vectorsin R". The
vectors are added and subtracted as follows:
Vector addltlon v+w= [v, Fw, Mt W, ...,V T W]

Vector subtractmn V- [vl Wi, Vy = Wy ooy ¥, — W]
If r is anly scalar, the: vector v is multiplied by r as follows
Scalar muluphcatmn Y =[rv, rvy, ..., 1]

As a natural extension of Definition 1.1, we can combine three or more
vectors in R” using addition or subtraction by simply adding or subtracting
their corresponding components. When a scalar in such a combination is
negative, as in 4u + (—7)v + 2w, we usually abbreviate by subtraction, writing
d4u — Tv + 2w. We write —v for (—1)v.
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X2
A

('U] + Wi, U2 + Wz)

vy + wy
‘U2+
v+w

Wy <
v
/| l

——
—_—t —+ + - X
v v} wi v +wy

FIGURE 1.10
Cornputation of v + w in k2

Let v=1[-3,5 —1]and w = {4, 10, —7] in R®. Compute Sv — 3w.

We compute
5v — 3w = 5[-3, 5, —1] - 3[4, 10, =7]
=[-15, 25, =5] - [12, 30, —21]
= [-27, =5, 16]. L]
For vectors v and w in R* pointing in different directions from the origin,
represent geometrically 5v — 3w.
This is done ir. Figure 1.11. =
The analogues of many familiar algebraic laws for addition and multipli-
cation of scalars also hold for vector addition and scalar multiplication. For
convenience, we gather them in a theorem.
s 5v— 3w Sv
///// v
—Ew 0 w
FIGURE 1.11

S5v = 3win R".
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THEOREM 1.1 Properties of Vector Algebra in R

Let u, v, and w be any vectors in R”, and let r and s be any scalars in R.

Properties of Vector Addition

Al W+v)+w=u+(v+w An associative law
A2 v+w=w+yv A commutative law
A3 C+v=y 0 as additive identity
» A4 v +(—v) =0 , —v as additive inverse of v

‘ Propéftigs‘lhirdlving Scalar Multiplication

St r(v+w)=rv+rw A distributive law

S2 (r+s)v =rv+ sy A distribative law

83 r(sv) = (rs)v An associative law
US4 wEv o Preservation of scale

The eight properties given in Theorem 1.1 are quite easy to prove, and we
leave most of them as exercises. The proofs in Examples 3 and 4 are typical.

EXAMPLE 3 Prove property A2 of Theorem 1.1.
SOLUTION Writing

V=1V, V..., ] and w=[w, wy, ..., W],
' we have
in, VAEWS[n+w, vyt Wy, v+ W]
and
wtyv=[w+v,w,t o, .., w, V]
i These two vectors are equal because v, + w; = w; + v, for each i. Thus, the
‘or commutative law of vector addition follows directly from the commutative law

of addition of numbers. =

EXAMPLE 4 Prove property S2 of Theorem 1.1.

SOLUTION Writing v = [y, v,, . . ., ¥,], we have
(r+sywv=0+9)v,v,....v]
=[(r+ sy, (r+ 8y, ..., + 5,
=[rv, +sv, vy + SV, ., 1y, +o8Y,]
=[rv, vy, v+ [sv,0sv,, L, S
=rv + sv.

Thus the property (r + s)v = rv + sv involving vectors foilows from the
analogous property (r + s)a; = ra; + sa; for numbers. =
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Parallel Vectors

The geometric significance of multiplication of a vector by a scalar, as
illustrated in Figure 1.9, leads us to this characterization of parallel vectors.

DEFI NITION 1.2 Parallel Vectors

Two nonzero vectors v and w in R" are parallel, and we write v || w, if
one is a scalar multiple of the other. If v = rw with r > 0, thenvand w
have the same direction; if 7 < 0, then v and w have opposite directions.

Determine whether the vectors v = [2, I, 3, —4] and w = [6, 3, 9, —12] are
paraliel. '

We put v = rw and try to solve for r. This gives rise to four component
equations:

2 = 6r, 1 =3r, 3 =9r, -4 = —12r.

Because r = % > 0 is a common solution to the four equations, we conclude that
v and w are parallel and have the same direction. ®

Linear Combinations of Vectors

Definition 1.1 describes how to add or subtract two vectors, but as we
remarked following the definition, we can use these operations to combine
three or more vectors also. We give a formal extension of that definition.

DEFINITION 1.3 Linear Combination

Given vectors v;, v, . . ., ¥, in R* and scalars r, ry, . . ., 1, in R, the
vector

erl + 72V2 + 0+ rka

is a linear combination of the vectors v,, v, ..., v, with scalar
coefficients 7, r,, . . ., 1.

The vectors [1, 0] and [0, 1] play a very important role in R?. Every vector
b in R? can be expressed as a linear combination of these two vectors in a
unique way—namely, b = [b,, b,] = r,[1, 0] + r,[0, 1] if and only if r, = b, and
r, = b, We call {1, 0] and [0, 1] the standard basis vectors in R They are
often denoted by i = [1, 0] and j = [0, 1], as shown in Figure 1.12(a). Thus in
R?, we may write the vector [b,, b;] as b,i + b,j. Similarly, we have three
standard basis vectors in R*—namely,

i=[1,00 j=[0,1,0], and k=1[0,0,1],
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X2

A
1

A

§

0 i 71 T

(@ ()
FIGURE 1.12

{a) Standard basis vectors in R? (b) standard basis vectors in R>.

as shown in Figure 1.12(b). Every vector in R? can be expressed uniquely as a
linear combination of i, j, and k. Fer example, we have [3, =2, 6] = 31 — 2j +
ok. For # > 3, we denote the rth standard basis vector, having 1 as the rth
component and zeros elsewhere, by

e,=[0,0,...,0,1,0,...,0]
1

rth component
We then have
b=1[b,b,...,0]=be +be,+ -+ be,

We see that every vector in R" appears as a unique linear combination of the
standard basis vector in R”.

The Span of Vectors

Let v be a vector in R". Ail possibie linear combinations of this single vector v
are simply all possible scalar multiples v for all scalars . If v # 0, all scalar
multiples of v fill a line which we shall call the line along v. Figure 1.13(a)
shows the line along the vector [—1, 2] in R? while Figure 1.13(b) indicates the
line along a nonzero vector v in R".

Note that the line along v always contains the origin (the zero vector)
because one scalar multiple of v is Ov = 0. <

Now let v and w be two nonzero and nonparaliel vectors in R". All possible
linear combinations of v and w are all vectors of the form rv + sw for all scalars
rand 5. As indicated in Figure 1.14, all these linear combinations fill a plane
which we call the plane spanned by v and w.
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A2
A
\ /
\
v v
1T
jiuio\ > X} 0
(@) (b)
FIGURE 1.13

a) The line along v in R? (b) The line along v in R™.
) 9

EXAMPLE 6 Referring to Figure 1.15(a), estimate scalars r and s such that rv + sw = b for
the vectors v, w, and b all lying in the plane of the paper. ’

SOLUTION We draw the line along v, the line along w, and parallels to these lines through
the tip of the vector b, as shown in Figure 1.15(b). From Figure 1.15(b), we
estimate that h = 1.5v — 2.5w. =

FIGURE 1.14
The plane spanned by v and w.
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A w

(@ (b)

FIGURE 1.15
(a) Vectors v, w, and b; (b) finding r and s so that b = rv + sw.

We now give an analytic analogue of Example 6 for two vectors in R2.

Let v = [i, 3] and w = [-2, 5] in R% Find scalars r and s such that rv + sw =
[—1, 19].

Because rv + sw =1, 3] + 5[=2, 5] = [r — 2s, 3r + 55], we see that rv + sw =
[-1, 19] if and only if both equations

r—2s=-1

3r+5s=19
are satisfied. Multiplying the first equation by —3 and adding the result to the
second equation, we obtain

0+ 11s = 22,

s0 5 = 2. Substituting in the equation r — 2s = —1, we find that r = 3. =

We note that the components —1 and 19 of the vector [—1, 19] appear on
the right-hand side of the system of two linear equations in Example 7. If we
replace — 1 by b, and 19 by b,, the same operations on the equations will enable
us to solve for the scalars r and s in terms of b, and b, (see Exercise 42). This
shows that all linear combinations of v and w do indeed fill the plane R2.

Example 7 indicates that an attempt to express a vector b as a linear
combination of given vectors corresponds to an attempt to find a solution of a
system of linear equations. This parallel is even more striking if we write our
vectors as columns of numbers rather than as ordered rows of numbers—that
is, as column vectors rather than as row vectors. For example, if we write the
vectors v and w in Example 7 as columns so that

] o[
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and also rewrite [~ 1, 19] as a column vector, then the row-vector equation
rv + sw = [—1, 19] in the statement of Example 7 becomes

13/ 770 5] 119
Notice that the numbers in this column-vector equation are in the same
positions relative to each other as they are in the system of linear equations

r—2s=-1
3r+5s=19

that we solved in Example 7. Every system of linear equations can be rewritten
in this fashion as a single column-vector equation. Exercises 35-38 provide
practice in this. Finding scalars r,, r,, . . ., r,such that ryv, + rv, + < < = + ny,
= b for given vectors v, v,, . . . , v,and bin R"is a fundamental computation in
linear algebia. Section 1.4 describes an algorithm for finding all possible such
scalars r, ry, . . ., I

The preceding paragraph indicates that often it will be natural for us to
think of vectors in R" as column vectors rather than as row vectors.

The transpose of a row vector v is defined to be the corresponding column
vector, and is denoted by v”. Similarly, the transpose of a column vector is the

11Ys

corresponding row vector. For example,

~1 o7
4
[-1, 4,15 -7 = 15 and |-30| =[2, —30, 45].
-7 45

Note that for all vectors v we have (v')7 = v. As illustrated following Example
7, column vectors are often useful. In fact, some authors always regard every
vector v in R as a column vector. Because it takes so much page space to write
column vectors, these authors may describe v by giving the row vector v7. We
do not follow this practice; we will write vectors in R" as either row or column
vectors depending on the context.

Continuing our geometric discussion, we expect that if u, v, and w are three
nonzero vectors in R* such that u and v are not parallel and also w is not a
vector in the plane spanned by u and v, then the set of all linear combinations
cfu, v, and w will fill a three-dimensional portion of R"—that is, a portion of
R” ihat looks just like R?, We consider the set of these linear combinations to be
spanned by u, v, and w. We make the followirg definition.

DEFINITION 1.4 Spanofv, v, ...,V
Letv,v,, ..., v.bevectorsin R" The span of these vectors is the set o
all linear combinations of them and is denoted by sp(v,, v,, . . ., v,). In

set notation,

PV, Vo, ..., V) ={rv, + iy, + s Ay |, ..., €ERL
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v, i . .

il’{f 1. Euclidear. n-space R" consists of all ordered r-tuples of real numbers. Each

h n-tupl.e x can be regarded as a point (x,, X,, ..., X, and represented
graphically as a dot, or regarded as a vector [x,, X, ..., x,] and

o represented by an arrow. The n-tuple 0 = [0, 0, . . . , 0] is the zero vector. A
real number r € R is called a scaiar.

n 2. Vectors v and w in R” can be added and subiracted, and each can be

1e multiplied by a scalar r € R. In each case, the operation is performed on
the components, and the resulting vector is again in R". Properties of these
operations are summarized in Theorem 1.1. Graphic interpretations are
shown in Figures 1.6, 1.8, and 1.9.

3. Two nonzero vectors in R* are parallel if one is a scalar multiple of the
other.
4. A linear combination of vectors v, v,, . . ., v, in R” is a vector of the foim

e ry, +ry, + - <+ + v, where each r,is a scalar. The set of all such linear

Iy combinations is the span of the vectors v,, v,, . . . , v, and is denoted by

:IZ Sp(vls \EEEE vk)'

m 5. Every vector in R” can be expressed uniquely as a linear combination of
the standard basis vectorse,, e,, . . . ,e,, where ¢;has | asits ith component

ce and zeros for all other components.

a

ns

of T ]

be | EXERCISES

In Exercises 1-4, computev + w and v — w for In Exercises 5-8, letu = [—1, 3, =2],v =
the given vectors v and w. Then draw coordinate [4, 0, —1], and w = [-3, -1, 2]. Compute the

SW 0 e
Dl
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It is important to ncte that sp(v,, v,, . . . , v,) in R” may not fill what we

intuitively consider to be a k-dimensional porticn of R". For example, in R? we

Vil Ul

see that sp([1, —2], [=3, 6]) is just the one-dimensional line along [1, —2]
because [—3, 6] = —3[1, -2 already lies in sp({1, —2]). Similarly, if v, is a
vector in sp(v,, v;), then sp(v,, v;, v3) = sp(v,, v,) and so sp(v,, ¥,, v;) is not
three-dimensional. Section 2.1 will deal with this kind of dependency among
vectors. As a result of our work there, we will be able to define dimensionality.

axes and sketch, using your answers, the vectors v,

W, Vv+w andv — w.

v=[2, -1}, w=[-3-2]
v=1[1,3,w=[-25]
v=i+3j+ 2k w=i+2+dk
v=2i-j+ 3k w=3i+ 5+ 4k

indicated vector.

5. 3u-2v

6. u+ 2(v— 4w)
7. u+v-w

8. 4(3u + 2v — Sw)
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In Exercises 912, compute the given linear
combination ofu = [1,2,1,0],v=[-2,0, 1, 6],
andw = [3, -5, |, -2].

9. u—2v + 4w
10. 3u+v-—-w

11. 4u — 2v + 4w
12. —u + 5v + 3w

In Exercises 13-16, reproduce on your paper
those vectors in Figure 1.16 that appear in the
exercise, and then draw an arrow representing
each of the followirg linear combinations. All of
the vectors are assumed to lie in the same plane.
Use the technique illustrated in Figure 1.7 when
all three vectors are involved.

13. 2u + 3v

14. —-3u + 2w
5. u+v+w
16. 2u—v+%‘w

In Exercises 17-20, reproduce on your paper
those vectors in Figure 1.17 that appear in the
exercise, and then use the technique illustrated in
Example 6 to estimate scalars r and s such that
the given equation is true. All of the vectors are
assumed o lie in the same plane.

17. x = ru + sv
18. y=ru+sv
19. u=rx + sv

20. y = ru + sx

W

=

v

0
FIGURE 1.16

VECTORS, MATRICES, AND LINEAR SYSTEMS

In Exercises 21-30, find all scalars c, if any exist,
such that the given statement is true. Try to do
some of these problems without using pencil and
paper.

21. The vector [2, 6] is parallel to the vector
[e, —3].

22. The vector [¢?, —4] is paralle! to the vector
(1, -2

23. The vector [c, —c, 4] is parallel to the vector
-2, 2, 20].

24. The vector [¢2, &3, ¢] is parallel to the vector
[1, =2, 4] with the same direction.

25. The vector [13, —15] is a linear combination
of the vectors [1, 5] and 3, c].

26. The vector [—1, c] is a linear combination of
the vectors [—3, 5] and [6, —11].

27. i+ ci — 3k is a linear combination of i + j
and j + 3k.

28 i+ +{c— Dkisinthespanofi + 2j + k
and 3i + 6j + 3k.

29. The vector 3i — 2j + ck is in the span of
i+2j—kandj+ 3k

30. The vector [c, —2c, ¢} is in the span of
(1, =1, 1}, 10, 1, =3], and
[0, 0, 1].

In Exercises 31-34, find the vector which, when
iranslated, represents geometrically an arrow
reaching from the first point to the second.

31. From (-1, 3) to (4, 2) in R?
32. From (-3,2, S)to (4, -2, —6) in R®
33. From (2, 1,5, —6)to (3, =2, 1, 7) in R

FIGURE 1.17
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39.

. From (1, 2, 3,4, 5)to (-5, -4, =3, -2, - 1)

in R®

. Write the linear system

3x—2y+4z= 10
x— y—-3z= 0
2x+ y—-35z=-3

as a column-vector equation.

. Write the linear system

x = 3x, + 2x, = -6
3x, —4x, + 5x, = 12

as a column-vector equation.

. Write the row-vector equation

pI=3,4, 6] + [0, =2, 5] - 1[4, =3, 2] +
5[6,0,7] =18, -3, 1]

as
a. a linear system,
b. a column-vectcr equation.

. Write the column-vector equaticn

-2 5 16 5
rl 3|+r 13|+ 0|=|-8
0 -4 -9 11}

[

as a linear system.
Mark each of the following True or False.

___ a. The notion of a vector in R” is useful

onlyif n =1, 2, or 3.
. Every ordered n-tuple in R” can be
viewed both as a point and as a vector.

of points in R" because we only add
vectors.

If a and b are two vectors in standard
position in R", then the arrow from the
tip of a to the tip of b is a translated
representation of the vector a — b.

MATLAB

It would be impossible to define addition

40.

41.

42.

42.

E‘l 43.

4.
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. If a and b are two vectors in standard
position in R", then the arrow from the
tip of a to the tip of b is a translated
representation of the vector b — a.

. The span of any two nonzero vectors in
R? is all of R,

. The span of any two nonzero, nonparallel
vectors in R? is all of R%.

. The span of any three nonzero,
nonparallel vectors in R? is all of R>.

i. If v, vy, . . ., v, are vectors in R? such
that sp(v;, v,, . .., v) = R, then k = 2.

. If v, vy, . .., v are vectors in R? such
that sp(v;, v;, . .. . v) = R?, ther k = 3.

Prove the indicated property of vector
addition in R", stated in Theorem 1.1.
a. Property Al
b. Property A3
c. Property A4

Prove the indicated property of scalar
multiplication in R”, stated in Theorem 1.1.
a. Property S1

b. Property S3

¢. Property S4

Prove algebraically that the linear system

r—25=b
3r+ 5s=b,

has a solution for all numbers b;, b, € R, as
asserted in the text.

Option 1 of the routine VECTGRPH in the
software package LINTEK gives graphic
quizzes on addition and subtraction of
vectors in R Work with this Option | until
you consistently achieve a score of 80% or
better on the quizzes. _
Repeat Exercise 43 using Option 2 of the
routine VECTGRPH. The quizzes this time
are on linear combinations in R%, and are
quite similar to Exercises 17-20.

The MATLAB exercises are desigred to build some familiarity with this widely used
software as you work your way through the text. Complete information can be
obtained from the manual that accompanies MATLAB. Some information is
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available on the screen by typing help followed by a space and then the word or
symbol about which you desire information.

The software LINTEK designed explicitly for this text does not require a
manual, because all information is automatically given on the screen. However,
MATLAB is a professionally designed program that is much more powerful than
LINTEK. Alihough LINTEK adequately illustrates material in the text, the
prospective scientist would be well advised to invest the extra time necessary to
acquire some facility with MATLAB.

Access MATLAB according to the directions for your installation. The MATLAB
prompt, which is its request for instructions, looks like >. Vectors can be entered by
entering the components in square brackets, separated by spaces; do not use commas.
Enter vectors a, b, ¢, u, v, and w by typing the lines displayed below. After you type
each line, press the Enter key. The vector components will be displayed, without
brackets, using decimal notation. Proofrcad each vector after you enter it. If you have
made an error, strike the up-arrow key and edit in the usual fashion to correct your :
error. (If you do not want a vectc: displayed for proofreading after entry, you can :
achieve this by typing ; after the closing square bracket.) If you ever need to continue
on the ne:t line to type data, enter at least two periods .. and immediately press the
Enter key and continue the data.

a=[2 -4 5§ 7]
b=[~1 6 7 3]
c=[13 -21 5 39]
u=1[2/3 3/5 1/7)
v=[3/2 -5/6 11/3]
w=[5/7 3/4 -2/3]

g

Now enter u (that is, type u and press the Enter key) to see u displayed again. Then
enter format long and then u to see the components of u displayed with more decimal
places. Enter format short and then u to return to the display with fewer decimal
places. Enter xat(u, 's"), which displays rational approximations that are accurate
when the numbers involved are fractions with sufficiently small denominators, to see u
displayed again in fraction (rational} format. Addition and subtraction of vectors can
be performed using + and —, and scalar multiplication using «. Enter a + b to see
this sum displayed. Then enter —3xa to see this scalar product displayed. Using what
you have discovered about MATLAB, work the following exercises. Entering who at E
any time displays a list of variables to which you have assigned numerical, vector, or
matrix values. When you have finished, enter quit or exit to leave MATLAB. i

M1. Compute 2a ~ 3b — 5c. _
M2. Compute 3¢ — 4(2a — b).
M3. Attempt to compute a + u. What happens, and why?

M4. Compute u + vin
a. short format
b. long format
c. rational (fraction) format.

MS. Repeat Exercise M4 for 2u - 3v + w by first entering x = 2au — 3av + w
and then looking at x in the different formats..
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Repeat Exercise M4 for %a - %b, entering the fractions as (1/3) and (3/7),
and using the time-saving technique of Exercise MS5.

Repeat Exercise M4 for 0.3u — 0.23w, using the time-saving technique of
Exercice M5.

The transpose v of a vector v is denoted in MATLAB by v'. Compute
a” — 3¢ and (a — 3c)”. How do they compare?

Try to compute u + u”. What happens, and why?

Enter help : to see some of the things that can be done using the colon. Use
the colon in a statement starting vl = to generate the vector vl = [-3 —2

—1 01 2], and then generate v2 = [1 4 7 10 13 16] similarly. Compute
%Vl + 3v2 in rational format. (We use v1 and v2 in MATLAB where we
would use v, and v, in the text.)

MATLAB can provide graghic illustrations of the component values of a
vector. Enter plot(a) and note how the figure drawn reflects the components
of the vector a = [2 —4 5 7]. Press any key to clear the screen, and repeat
the experiment with bar(a) and finally with stairs(a) to see two other ways to
illustrate the component values of the vector a.

Using the plot command, we can plot graphs of functions in MATLAB. The

command plot(x, y) will plot the x vector against the y vector. Enter x =

~1: .5: 1. Note that, using the colons, we have generated a vector of

x-coordinates starting at —1 and stopping at 1, with increments of 0.5. Now

enter y = x .« X . (A period before an operator, such as .+ or .x, will cause

that operation to be performed on each component of a vector. Enter help .

to see MATLAB explain this.) You will see that the y vector contains the

squares of the x-coordinates in the x vector. Enter plot(x, y) to see a crude

plot of the graph of y = xX* for ~1 = x = 1.

a. Use the up-arrow key to return to the colon statement and make the
increment .2 rather than .5 to get a better graph. Use the up-arrow key to
get to the y = x .+ x command, and press the Enter key to generate the
new y vector with more entries. Then get to the plot(x, y) command and
press Enter to see the improved graph of y = x* for -1 < x = 1.

b. Proceed as in part (a) to graph y = x? for —3 < x < 3 with increments of
0.2. This time, put a semicolon after the command that defines the vector
x before pressing the Enter key, so that you don’t see the x-coordinates
printed out. Similarly, put a semicolon after the command defining the
vector y.

c. Plot the graph of y = sin(x) for —47 < x < 47. The number 7 can be
entered as pi in MATLAB. Remember to use = for multiplication.

d. Plot the graph of y = 3 cos(2x) — 2 sin(x) for —47 < x < 47. Remember
to use « for muitiplication.
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1.2 THE NORM AND THE DOT PRODUCT

TR Y

The Magnitude of a Vector

The magnitude ||v|| of v = [v,, v,] is considered to be the length of the arrow in
Figure 1.18. Using the Pythagorean theorem, we have

M = Vv F VL M

EXAMPLE 1 Represent the vector v = [3, —4] geometrically, and find its magnitude‘.
SOLUT!ON The vector [3, -4} has magnitude
Ml = /3 (AT = V35 =
and is shown in Figure 1.19. =

In Fignre 1.20, the magnitude ||v|| of a vector v = [v,, v,, v;] in R® appears as ¢
the length of the hypotenuse of a right triangle whose altitude is |v;| and whose

base in the x,,x,-plane has length Vv,* + v,2. Using the Pythagorean theorem, “

we obtain

Ml = VT v+ v @ &

I3

: £

EXAMPLE 2 Represent the vector v = [2, 3, 4] geometrically, and find its magnitude. %
E

SOLUTION The vector v = [2, 3, 4] has magnitude |lv| = V22 + 32 + 4 = V29 and is E
represented in Figure 1.21. = E

g

g

> x)

vy 1 ) (-Ul: 02)

vl

v=1[3 -4

—+ —» X

0 o

FIGURE 1.18 FIGURE 1.19
The magnitude of v in R2 The magnitude of [3, —4].
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st~ IM= V29

v=1{2,3,4]

Y

X2

Uy

%

\., 2 2
v"+ vy X)

£xy
ke | GURE 1.20 FIGURE 1.21
'5%The magnitude of v in R®. The magnitude of {2, 3, 4].
Y
The magnitude of a vector is also called the norm or the length of the
2): vector. As suggested by Egs. (1) and (2), we define the norm ||v]| of a vector v in
R" as follows.
s DEFINITION 1.5 Norm or Magnitude of a Vector in R"
Lis
Letv=[v,v,...,v,]bea vectorin R" The norm or magnitude of v is
Ml = Vw® 4 v+l 3)
XAMPLE 3 Find the magnitude of the vector v = [-2, 1, 3, ~1, 4, 2, 1].
SOLUTION We have
- M= V(=2 + P+ 37+ (-1 + 42+ 27+ 2=V36=6 =
x

Here are some properties of this norm operation.
THEOREM 1.2 Properties of the Norm in R"

For all vectors v and w in R" and for all scalars r, we have

1. |Vl = 0 and ||v|| = O if and only if v =0 Positivity

2. vl = |7 vl Homogeneity

3. 0v + wil = |vll + (w]] Triangle inequality
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0

FIGURE 1.22
The triangle inequality.

Proofs of Properties 1 and 2 foliow immediately from Definitien 1.5 and
appear as exercises at the end of this section. Figure 1.22 shows why Property 3
1§ called the triangie inequality; geometrically, it states that the length of a side
of a triangie is less than or equal to the sum of the lengths of the other two
sides. Although this seems obvious to us from Figure 1.22, we really should
prove it—at least for n > 3, where we simply extended our definition of ||v|| for
v in R? or R* without any further geometric justification. A proof of the triangle
inequality is given at the close of this section.

Unit Vectors
A vector in R" is a unit vector if it has magnitude 1. Given any nonzero vector v
in R", a unit vector having the same direction as v is given by (1/[|v]|)v.

Find a unit vector having the same directionas v = [2, 1, —3], and find a vector
of magnitude 3 having direction opposite to v.

Because ||| = V22 + 12 + (-3)’ = V14, we see that u = (1/V14)[2, 1, -3]is

the unit vector with the same direction as v, and —3u = (=3/\V14)[2, 1, -3]
is the other required vector. =

The two-component unit vectors are precisely the vectors that extend from
the origin to the unit circle x* + y? = 1 with center (0, 0) and radius 1 in R2. (See
Figure 1.23a.) The three-component unit vectors extend from (0, 0, 0) to the
unit sphere in R3, as illustrated in Figure 1.23(b).

Note that the standard basis vectors i and jin R?, as well as 1, j, and k in R?,
are unit vectors. In fact, the standard basis vectors e, e,, . . . , e, for R" are unit

1. For this reason, these standard basis vectors are also called unit coordinate
vectors.

vectors, because each has zeros in all components except for one component of
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(b)

(a)

FIGURE 1.23
(a) Typical unit vector in R% (b) typical unit vector in R,

The Dot Product

The dot product of two vectors is a scalar that we will encounter as we now
try to define the angle 6 between two vectors v = [v,, v,, ..., v,] and w =
[wy, Wy, ..., w,] in R", shown symbolicaliy in Figure 1.24. To motivate the
definition of 6, we will use the law of cosines for the triangle symbolized in
Figure 1.24. Using our definition of the norm of a vector in R" to compute the
lengths of the sides of the triangle, the law of cosines yields

[IM[* + [wl[* = ilv — wi[* + 2ivl| [[wl| (cos 6)
or
vit oo et yiawlt e b}
= =wt e+ (= w)t + 2] W] (cos 8). (4
After computing the squares on the right-hand side of Eq. (4) and simplifying,
we obtain

¥l [iwl] (cos 8) = ww, + - -« + vw, (5)

v~ wl

6
V w
FIGURE 1.24
The angle between v and w.
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The sum of products of corresponding components in the vectors v and w on
the right-hand side of Eq. (5) is frequently encountered, and is given a special
name and notation. ‘

DEFINITION 1.6 The Dot Product
The dot product of vectors v = [v, vy, . . ., v,Jand w = [w, W,, . . . , W,]
in R* is the scalar given by

Vew=yw Hymt oo+, ©

The dot product is sometimes called the inner product or the scalar
product. To avoid possible confusion with scalar multiplication, we shall never
use the latter term.

In view of Definition 1.6, we can write Eq. (5) as

vew=|v||[w] (cos 6). )

Equation (7) suggests the following definition of the angle 6 between two
vectors v and w in R”.

The angle between nonzero vectors v and w is arccos ( va-”—”‘-;ﬂ) )
\

Expression (8) makes sense, provided that

1= o )]
[[vI] [Iw]

so that we can indeed compute the arccosine of (v - w)/(]|v|| |[w||). This inequality
(9) is usually rewritten in the form

lv e w| <|lv]|[w]|. Schwarz inequality (10)
We obtained it by assuming that Figure 1.24 is an appropriate representation
for vectors v and w in R, We give a purely algebraic proof of it at the end of this
section to validate the definition in expression (8).
Find the angle 6 between the vectors [, 2, 0, 2] and [—3, 1, L, 5] in R*,
We have
6= [1,2,0,2]-[-3, 1,1, 9] _ 9 1

SI=ENTT 2+ 0+ 2 V() + P+ P+ 36 2

Thus, 6 = 60°. =
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Equation 7 gives a geometric meaning for the dot product.

The dot product of two vectors is equal to the product of their
magnitudes with the cosine of the angle between them.

THEOREM 1.3 Properties of the Dot Product in R”

Let u, v, and w be vectors in R" and let » be any scalar in R. The
following properties hold:

Dl vew=w-y, ‘ Commutative law
D2u-(v+wy=u-v+u-w, . Distributive law
D3 r(v-w)=(rv)-w=1v-(rw), Homogzsneity

D4 v-v=0,andv-v=20if and only if v = 0. Positivity

Verification of all of the properties in Theorem 1.3 is straightforward, as
illustrated in the following example.

HISTORICAL NOTE THE SCHWARZ INEQUALITY is due independently to Augustin-Louis Cauchy
(1789-1857) (see note on page 3), Hermann Amandus Schwarz (1843-1921), and Viktor
Yakovlevich Bunyakovsky (1804-1889).

It was first stated as a theorem about coordinates in an appendix to Cauchy’s 1821 text for his
course on analysis at the Ecole Polytechnique, as follows:

laa+ayar+anau+._.|S—\/az+a,3+au:+,__ ‘\/a]+al:+a"2+..-_

Cauchy’s proof follows from the algebraic identity
(aa +a'a’ +a'a" + Y+ (aa’ —a'a) + (ad" — daf + - +(da" —addY+
=(@+a*+ad"+ Y+ F "+ )
Bunyakovsky proved the inequality for functions in 1859; that is, he stated the result

b 1 h b
|L f a fx)gix) d_\'J = ] . ) dox - Ja £3(x) dv,

where we can consider J'z J(x)g(x; dx to be the inner product of the functions f{x), g(x) in the
vector space of continuous functions on [a, b]. Bunyakovsky served as vice-president of the St.
Petersburg Academy of Sciences from 1864 until his death. In 1875, the Academy established a
mathematics prize in his name in recognition of his 50 years of teaching and research.

Schwarz stated the inequality in 1884. In his case, the vectors were functions ¢, X of two
variabies in a region 7 in the piane, and the inner product of these functions was given by
I ¢X dx dy, where this integral is assumed to exist. The inequality then states that

[ wvsei| < N[ oacar V[ 7w

Schwarz’s proof is similar to the one given in the text (page 29). Schwarz was the leading
mathematician in Berlin around the turn of the century; the work in which the inequality appears
is devoted to a question about minimal surfaces.
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EXAMPLE 6 Verify the positivity property D4 of Theorem 1.3.

SOLUTION Weletv=[v,v, ... ], and we find that

VY=YV

R AR I

2
+ v

A sum of squares is nonnegative and can be zero if and only if each summand
is zero. But a summand v? is itself a square, and will be zero if and only if v, =
0. This completes the-demonstration. =

It is important to observe that the norm of a vector can be expressed in
terms of its dot product with itself. Namely, for a vector v in B" we have

P =v+v.

(1)

Letting v = [v,, v, - - - ,¥,], we have

Vev=yy ot ow, o

..+

vnvn - ||v||2

Equation 11 enables us to use the algebraic properties of the dot product in
Theorem 1.3 to prove things about the norm. This technique is illustrated in
the preof of the Schwarz and triangle inequalities at the end of this section.

Here is another illustration.

EXAMPLE 7 Show that the sum of the squares of the lengths of the diagonals of a
parallelogram in R” is equal tc the sum of the squares of the lengths of the
sides. (This is the parallelograra relution).

SOLUTION We take our parallelogram with vertex at the origin and with vectors v and w
emanating from the origin to form two sides, as shown in Figure 1.25. The
lengths of the diagonals are then |lv + w|| and ||v — w||. Using Eq. (11) and
properties of the dot product, we have

vV+w

Ty - wif

=(v+w (vt w+(v—w-(v—w
- =W+ 2(veow)H(Wew)ht (vev) - 2(veow) + (W w)
=2(v-v)+ 2w-w

= 2IMP + 2|wiP,

which is what we wished to prove. ®

The definition of the angle § between two vectors vand w in R” leads naturally
tc this definition of perpendicular vectors, or orthogonal vectors as they are

usually called in linear algebra.

SRR

T

Exgivists
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0

FIGURE 1.25
The parallelogram has v + w and
v — w as vector diagonals.

DEFINITION 1.7 Perpendicular or Orthogonal Vectors

Two vectors v and w in R" are perpendicular or orthogonal, and we
writev L w, if v - w = 0,

Determine whether the vectors v = [4, 1, =2, 1] and w = [3, -4, 2, —4] are
perpendicular.

We have
veow = (4)3) + (1)(=4) + (=2)2) + (1)(-4) = 0.

Thus,v L w. =

Application to Velocity Vectors and Navigation

The next two examples are concerned with another important physical vector
model. A vector is the velocity vector of a moving object at an instant if it
points in the direction of the motion and if its magnitude is the speed of the
object at that instant. Physicists tell us that if a boat cruising with a heading
and speed that would give it a still-water velocity vector s is also subject to a
current that has velocity vector ¢, then the actual velocity vector of the boat is
vy=s+c

Suppose that a ketch is sailing at 8 knots, following a course of 010° (that is, 10°
east of north), on a bay that has a 2-knot current setting in the direction 070°
(that is, 70° east of north). Find the course and speed made good. {The
expression made good is standard navigation terminology for the actual course
and speed of a vessel over the bottom.)
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SOLUTION

EXAMPLE 10
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The velocity vectors s for the ketch and ¢ for the current are shown in Figure
1.26, in which the vertical axis points due north. We find s and ¢ by using a
calculator and computing

s = [8 cos 80°, 8 sin 80°] = [1.39, 7.88]
and
¢ = [2 cos 20° 2 sin 20°] = [1.88, 0.684].

By adding s and ¢, we find the vector v representing the course and speed of the
ketch over the bottom—that is, the course and speed made good. Thus we
have v = s + ¢ = [3.27, 8.56]. Therefore, the speed of the ketch is

vl = V(3.27)* + (8.56)* = 9.16 knots,

and the ~ourse made good is given by

90° - arctan(8 56 = 90° — 69° = 21°,

3 27)
That is, the course is 021°. =
Suppose the captain of our ketch realizes the importance of keeping track of

the current. He wishes to sail in 5 hours to a harbor that bears 120° and is 35
nautical miles away. That is, he wishes io make good the course 120° and the

“speed 7 knots. He knows from a tide and current table that the current is

setting due south at 3 knots. What should be his course and speed through the
water?

. N
2
10°
]2
=91
vl =16 -
3
|~ llell =2
/ c
20°
A . 6.06
FIGURE 1.26 FIGURE 1.27

The vectorv = s + c. The vectors = v — ¢.

Rctakili o i g

E
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In a vector diagram (see Figure 1.27), we again repres=nat the course and speed
to be made good by a vector v and the velocity of the current by ¢. The correct
course and speed to follow are represented by the vector s, which is obtained
by computing

S=v—¢
= [7 cos 30°, =7 sin 30°] — [0, —3]
~ [6.06, —3.5] — [0, —3] = [6.06, —C.5].

Thus the captain should steer course 90° — arctan(—0.5/6.06) =~ 90° + 4.7° =
94.7° and should proceed at

lIsil = V/(6.06)2 + (=0.5) = 6.08 knots. n

Proofs of the Schwarz and Triangle Inequaiities

The proofs of the Schwarz and triangle inequalities illustrate the use of
algebraic properties of the dot product in proving properties of the norm.
Recall Eq. {11): for a vector v in R*, we have

ME = v v.

THEOREM 1.4 Schwarz Inequality

Let v and w be vectors in R". Then |v - w| < ||| ||w].

PROOF Because the norm of a vector is a real number and the square of a real
number is nonnegative, for any scalars r and s we have

lrv + sw|?* = 0. 12)
Using relation (11), we find that _
lrv + sw|* = (rv + sw) « (rv + sw)
=riv-v)+ 2rs(v-w) + sA(w-w)=0
for all choices of scalars  and s. Setting r = w - w and s = —{v - w), the
preceding inequality becomes
(W WY - v) — 2(w - w)(V - W) + (v W)W+ w)
= (W WY - %) = (- W w2 = 0.
Factoring out (w - w), we see that
(w-wW[(w-w)v-v)—(v- w)QZ] = (. (13)

If w - w = 0, then w = 0 by the positivity property in Theorem 1.3, and the
Schwarz inequality is then true because it reduces to 0 < 0. If |wj* = w - w # 0,
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then the expression in square brackets in relation (13) must also be nonnega-
tive—that is,

(Wwew)(v-v)—(v-w¥=0,
and so

(vowp = (vev)(w - w) = [vwii

Taking square roots, we obtain the Schwarz inequality.

The Schwarz inequality can be used to prove the triangle inequality that
was illustrated in Figure 1.22.

R TR T R T R R T O

THEOREM 1.5 The Triangle Inequality

Let v and w be vectors in R”. Then ||v + w|| < ||v|| + |[w]|.

PROOF Using properties of the dot product, as weli as the Schwarz inequality,
we have

v + w2 = (v + w)(v + w)
=(vev)+2(v-w)+(w-w
= (v v) £ 2| Wl + (w - w)
= [IvIP + 2] Wl + {Iwl?
= (IMl + [wll)*.

The desired relation follows at once, by taking square roots. a

SUMMARY

Letv=1[v,v,...,v]andw=[w, w, ..., w,] bevectorsinR"

1. The norm or magnitude of vis ||v]| = Vv2 + v + - - - +v2
2. The norm satisfies the properties given in Theorem 1.2.

3. A unit vector 1s a vector of magnitude 1.

4. The dot product of vand wisv .w = vw + vyw, + - - + vw,
5. The dot product satisfies the properties given in Theorem 1.3.
6.

and also |[v + wi| < ||v]] + ||w|| (¢triangle inequality).

7. The angle 6 between the vectors v and w can be found by using the relation
v w = |[v]] [[w] (cos 6).

8. The vectors v and w are orthogonal (perpendicular) if v - w = 0.

Moreover, we have v+ v = |v||* and |v - w| < ||V ||w]| (Schwarz inequality), E
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EXERCISES

& [n Exercises 1=17, letu = [=1. 3, 4], v =
2 1, —1), and w = [=2. —1, 3]. Find the

; " indicated quantity.

1. [|-ull
2. M
3. u+ V|
4. v — 2ul]
5. [|3u— v+ 2w
E 6. v
E 7. The unii vector parallel to u, having the

same direction

: opposite direction

; 9. u-vy

1  10. u-{v+w

11 w+y)-w

W12, The angle between u and v
13. The angle between u and w

14. The value of x such that [x, =3, 5] 1s
K perpendicular to u

E15. The value of y such that [—3, y, 10] is
B perpendicular tou

and v

§17. A nonzero vector perpendicular to both u

_E and w

eln Fxercises 18- 21, use properties of the dot

.Ea'producl and norm to compule the indicated

Egjuanlilies mentally, without pencil or paper (or

calculator).

8. |42, 14]|

(10, 20, 25, - 15]|

. [14, 21, 28] - [4, 8, 20]

. [12, =36, 24] - [25, 30, 10]

>

ity)

-
po= S

=
)

and (7,0, L, 3, 2, 4] in R".

»

are vertices of a right triangle in R,

R .zmwwiﬂ

8. The unit vector parallel to w, having thc

7 6. A nonzero vector perpendicular to both u

Find the angle between [1, ~1, 2, 3, 0, 4]

Prove that (2, 0, 4), (4, |, —1), and (6, 7, 7)

24. Prove that the angle between two unit
vectors u; and u, in R” is arccos(u, * u,).

In Excrcises 25-30, classify the vectors as
parallel, perpendicular, or neither. If they are
parallel, state whether they have the same
direction or opposite directions.

25. [-1,4] and [8, 2]

26. [-2, —1]and [5. 2]

27. [3,2, 1] and [-9, ~6, = 3]

28. [2, 1,4, —1]and [0, 1, 2, 4]

29. [i0, 4, -1, 8} and [-5, -2, 3, —4]

30. [4,1,2,1,6]and [8, 2,4, 2, 3]

31. The distance between points (v, v, . . . , ¥}
and (w;, Wy, . .., w,) in R" is the norm
|lv — w||, where v = |v,, v5, . . ., »,] and w =
[wy, Wy, ..., w,]. Why is this a reasonable
defiuition of distance?

In Exercises 32-35, use the definition given in
Exercise 31 to find the indicated distance.

32. The distance from (-1, 4, 2) to (0, 8, 1) in
RJ

33. The distance from (2, —1, 3) to (4, I, —2) in
RJ

34. The distance from (3, 1, 2, 4)to (-1, 2, 1, 2)
in R*

35. The distance from (-1, 2, 1, 4,7, =3) to
(2,1,-3,5,4,5)in R

36. The captain of a barge wishes to get tc a
point directly across a straight river that
runs from north to south. If the current
flows directly downstream at 5 knots and the
barge steams at 13 knots, in what direction
should the captain steer the barge?

37. A 100-Ib weight is suspended by a rope
passed through an eyelet on top of the
weight and making angles of 30° with the
vertical, as shown in Figure 1.28. Find the
tension (magnitude of the force vector) along
the rope. [HINT: The sum of the force vectors
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FIGURE 1.28
Both halves of the rcpe make an
angle of 30° with the vertical.

along the two halves of the rope at the evelet
must be an upward vertical vector of
magnitude 100.]

38. a. Answer Exercise 37 if each half of the
rope makes an angle of 6 with the vertical
at the eyelet.

b. Find the tension in the rope if both
halves are vertical (6 = 0).

¢. What happens if an attempt is made to
stretch the rope out straight (horizontal)
while the 100-Ib weight hangs on it?

39. Suppose that a weight of 100 1b is suspended
by two different ropes tied at an eyelet on
top of the weight, as shown in Figure 1.29.
Let the angles the ropes make with the
vertical be 6, and 8,, as shown in the figure.
Let the tensions in the ropes be 7, for the
right-hand rope and T, for the left-l.and
rope.

a. Show that the force vector F, shown in
Figure 1.29 is T\(sin 6,)i + T\(cos 6,)].

b. Find the corresponding expression for F,
in terms of T, and 6..

¢. If the system is in equilibrivm, F, + F, =
100j, so F, + F, must have i-component
0 and j-component [00. Write two
equations reflecting this fact, using the
answers to parts (a) and (b).

d. Find 7, and T, if 6, = 45° and 6, = 30°.

FIGURE 1.29

Two ropes tied at the eyelet and
making angles 6, and 6, with the
vertical.

40. Mark each of the following True or False.

—a.

—b

___C

Every nonzero vector in R* has nonzero
magnitude.

Every vector of nonzero magnitude in R”
is nonzero.

The magnitude of v + w must be at least
as large as the magnitude of either v or w
in R".

n L

. Every nonzero vector v in R” has exactly

one unit vector parallel to it.
There are exactly two unit vectors
parallel to any given nonzero vector in

- R

There are exactly two unit vectors
perpendicular to any given nonzero
vector in R™.

. The angle between two nonzero vectors

in R" is less than 90° if and only if the
dot product of the vectors is positive.

. The dot product of a vector with itself

yields the magnitude of the vector.

. For a vector v in R”, the magnitude of r

times v is r times the magnitude of v.
If v and w are vectors in R" of the same
magnitude, then the magnitude of v — w
is 0.

41. Prove the indicated property of the norm
stated in Theorem 1.2,

a.
b.

The positivity property
The homogeneity property
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_ Prove the indicated property of the dot
product stated in Theorem 1.3.

a. The commutative law

b. The distributive law

¢. The homogeneity property

. For vectors v and w in R”, prove that v — w
and v + w are perpendicular if and only if W
Il = Il

. For vectors u, v, and w in R" and for scalars r
and s, prove that, if w is perpendicular to
both u and v, then w is perpendicular to

ru + Sv.

. Use vector methods to prove that the
diagonals of a rhombus (parallelogram with
equal sides) are perpendicular. [HINT: Use a FIGURE 1.30
figure similar to Figure 1.25 and one of the
preceding exercises.]

. Use vector methods to prove that the midpoint of the hypotenuse.
midpoint of the hypotenuse of a right

triangle is equidistant from the three

vertices. [HINT: See Figure 1.30. Show that

1
The vector E(V + w) to the

1 1
5 + wil = l5(v = wil]

MATLAB

MATLAB has a built-in function norm(x) for computing the norm of a vector x. It
has no built-in command for finding a dot product or the angle between two vectors.
Because one purpose of these exercises is to give practice at working with MATLAB,
we will show how the norm of a vector can be computed without using the built-in
function, as well as how to compute dot products and angles between vectors.

It is important to know how to enter data into MATLAB. In Section .1, we
showed how to enter a vector. We have created M-files on the LINTEK disk that

: can be used to enter data automaticaily for our exercises, once practice iii manual
data entry has been provided. If these M-files have been copied iniv your MATLAB,
you can simply enter fbels2 to create the data vectors a, b, ¢, u, v, and w for the
exercises below. The name of the file containing them is FBC1S2.M, where the
FBCI1S2 stands for “Fraleigh/Beauregard Chapter 1 Section 2.” To view this data
file so that you can create data files of your own, if you wish, simply enter type
fbc1s2 when in MATLAB. In addition to saving time, the data files help prevent
wrong answers resulting from typos in data entry.

T T R T T

o

Access MATLAB, and either enier fbcls2 or manually enter the following vectors.
a=[-21351] u = [2/3 -4/7 8/5]
b=[4-1235] v =[-1/2 13/3 17/11]
c=[-10304] w = [22/7 15/2 -8/3]
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If you enter these vectors manually, be sure to proofread your data entry for accuracy.
Enter help . to see what can be done with the period. Enter a + b and compare the
resulting vector with the vectors a and b. (Be sure to get in the habit of putting a space
before the period so that MATLAB will never interpret it as a decimal point in this
context.) Now enter ¢ 3 and compare with the vector c. The symbol ™ is used to
denote exponentiation. Then ent2r sum(a) and note how this number was obtaincd
from the vector a. Using the . notation, the sum function sum(x), the square root
function sqrt(x), and the arccosine function acos(x), we can easily write formulas for
computing norms of vectors, dot products of vectors, and the angle between two
vectors.

M1. Enter x = a and then enter rormx = sqrt(sum(x .x %)) to find ||al|. Compare
your answer with the result obtained by entering norm(a).

M2. Find ||b| by entering x = b and then pressing the upward arrow until
equation nermx = sqrt(sum(x .» x)) is at the cursor, and then pressing the
Enter key.

M3. Using the technique outlined in Exercise M2, find ||uf|.

M4. Using the appropriate MATLAB commands, compute the dot product v * w in
(a) short format and (b) rational format.

MS. Repeat Exercise M4 for (2u — 3v) » (4u — 7v).

NOTE: If you are working with your own personal MATLAB, you can add a function angl(x, y) for
finding the angle between vectors x and y having the same number of components to MATLAB’s
supply of available functions. First, enter help angl to be sure that MATLAB does not already have
a command with the name you will use; otherwise you might delete an existing MATLAB
function. Then, assuming that MATLAB has created a subdirectory C:\MATLAB\MATLAB on
your disk, get out of MATLAB and either use a word processor that will create ASCII files
or skip to the next paragraph. Using a word processor, create an ASCII file designated as
C:\MATLAB\MATLAB\ANGL.M by entering each of the following lines.

function z = angl(x, y)
% ANGL ANGL (x, y) is the radian angle between vectors x and y.
z = acos(sum(x .+ y)/(norm(x)snorm(y))) )

Then save the file. This creates a function angl(x, y) of two variables x and y in place of the name
anglxy we use in M6. You will now be able to compute the angle between vectors x and y in
MATLARB simply by entering angl(x, y). Note that the file name ANGL.M concludes with the .M
suffix. MATLAB comes with a number of these M-files, which are probably in the subdirectory
MATLAB\MATLAB of your disk. Remember to enter help angl from MATLAB first, to be sure
there is not already a file with the name ANGL.M.

If you do not have a word processor that writes ASCII files, you can still create the file from
DOS if your hard disk is the default c-drive. First enter CD C:\MATLAB\MATLAB. Then enter
COPY CON ANGL.M and proceed to enter the three lines displayed above. When you have
pressed Enter after the final line, press the F6 key and then press Enter again.

After creating the file, access MATLAB and test your function angl(x, y) by finding the angle
between the vectors [1, 0] and [- 1, 0]. The angle should be = = 3.1416. Thea enter help angl and
you should see the explanatory note on the line of the file that starts with % displayed on the
screen. Using these directions as a model, you can easily create functions of your own to add to
MATLAB.
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M6. Enter x = a and enter y = b. Then enter
anglxy = acos(sum(x .+ y)/(norm(x)+norm(y)))

to compute the angle (in radians) between a and b. You should study this
formula until you understand why it provides the angle between a and b.

M7. Compute the angle between b and ¢ using the technique suggested in Exercise
M2. Namely, enter x = b, enter y = ¢, and then use the upward arrow until
the cursor is at the formula for anglxy and press Enter.

MS8. Move the cursor to the formula for anglxy and edit the formula so that the
angle will be given in degrees rather than in radians. Recall that we multiply
by 180/# to convert radians to degrees. The number = is available as pi in
MATLAB. Check your editing by computing the angle between the vectors
[1, 0} and [0, {]. Then find the angle between u and w in degrees.

M09. Find the angle between 3u — 2w and 4v + 2w in degrees.

MATRICES AND THEIR ALGEBRA

The Notation Ax = b
We saw in Section 1.1 that we can write a linear system such as
X, — 2x, = -1
3x, + 5x, = 19 (nH

in the unknowns x, and x, as a single column vector equation—namely,

A

Another useful way to abbreviate this linear system is

R 1 -2 Xy - -1 ()
3 5|x, 19 i
A4 X b

Let us denote by A the bracketed array on the left containing the coefficients of
the linear system. This array 4 is followed by the column vector x of
unknowns, and let the column vector of constants after the equal sign be
denoted by b. We can then symbolize the linear system as

Ax = b. )

There are several reasons why notation (4) is a convenient way to write a linear
system. It is much easier to denote a general linear system by Ax = b than to
write out several linear equations with unknowns x,, x,, . . . , x,, subscripted
letters for the coefficients of the unknowas, and constants b,, b, . . . , b, to the
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right of the equal signs. [Just look ahead at Eq. (1) on page 54.] Also, a single
linear equation in just one unknown can be written in the form ax = b (2x = 6,
for example), and the notation Ax = b is suggestively similar. Furthermore,
we will see in Section 2.3 that we can regard such an array 4 as defining a
Junction whose value at x we will write as Ax, much as we write sin x. Solv-
ing a linear system Ax = b can thus be regarded as finding the vector x
such that this function applied to x yields the vector b. For all of these rea-
sons, the notation Ax = b for a linear system is one of the most uséful nota-
tions in mathematics.
[t is very important to remember that

Ax is equal to a linear combination of the column vectors of A,

as illustrated by Eqgs. (2) and (3)—namely,

BRI )

4 L7 ed

The Notion of a Matrix

We now introduce the usual terminology and notation for an array of numbers
such as the coefficient array 4 in Eq. (3).

A matrix is an ordered rectangular array of numbers, usually euclosed in
parentheses or square brackets. For example,

are matrices. We will generally use-upper-case letters to denote matrices.
_Thesizeofa matrmﬁﬁﬁmrﬂmﬁﬁd the
nuitber of (vertical) columns that it contains. The matrix 4 above contains
iwo rows and two columns and is called a 2 X 2 (read “2 by 2") matrix.
Similarly, Bis a 4 X 3 matrix. In writing the notation m X n to describe the
shape of a matrix, we always write the number of rows first. An n X n matrix
has the same number of rows as columns and is said to be a square matrix. We
recognize that a 1 X n matrix is a row vector with n components, and an m X 1
matrix is a column vector with m components. The rows of a matrix are its row
vectors and the columns are its column vectors.
Double subscripts are commonly used to indicate the location of an entry
in a matrix that is not a row or column vector. The first subscript gives the
number of the row in which the entry appears (counting from the top), and the
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second subscript gives the number of the column (counting from the left).
Thus an m X »n matrix 4 may be written as

Ay A ay s a;,.}
dy, Qy 0w a,,
ay an Ay - a
A= [aij] — k| 3 3 3n
_aml am’. am} e amn_
If we want to express the matrix B on page 36 as [b;], we would have b, = —1,

by, = 2, by, = 5, and so on.

Matrix Muitiplication

We are going to consider the expression Ax shown in Eq. (3) to be the product
of the matrix 4 and the column vector x. Looking back at Eq. (5), we see that
such a product of a matrix 4 with a column vector x should be the linear
combination of the column vectors of 4 having as coefficients the components
in the vector x. Here is a nonsquare example in which we replace the vector x of
unknowns by a specific vector of numbers.

Write as a linear combination and then compute the product

[ 2 -3 5} _2
-1 4 -7]] 3|
L >

HISTORICALNOTE THE TERM MATRIx is first mentioned in mathematical literature in an 1850
paper of James Joseph Sylvester (1814-1897). The standard nontechnical meaning of this term is
“a place in wliich something is bred, produced, or developed.” For Sylvester, then, a matrix, which
was an “oblong arrangement of terms,” was an entity out of which one could form various square
pieces to produce determinants. These latter quantities, formed from squaie matrices, were quite
well known by this time.

James Sylvester (his original name was James Joseph) was born into a Jewish family in
London, and was to become one of the supreme aigebraists of the nineteenth century. Despite
having studied for several years at Cambridge University, he was not permitted to take his degree
there because he “professed the faith in which the founder of Christianity was educated.”
Therefore, he received his degrees from Trinity College, Dublin. In 1841 he accepted a
professorship at the University of Virginia; he remained there only a short time, however, his
horror of slavery preventing him from fitting into the academic community. In 1871 he returned
to the United States to accept the chair of mathematics at the newly opened Johns Hopkins
University. In betwezn these sojourns, he spent about 10 years as an attorney, during which time
he met Arthur Cayley (see the note on p. 3), and i5 years as Professor of Mathematics at the Royal
Military Academy, Woolwich. Sylvester was an avid poet, prefacing many of his mathematical
papers with examples of his work. His most renowned example was the “Rosalind” poem, a
400-line epic, each line of which rhymed with “Rosalind.”
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Using Eq. (5) as a guide. we find that

| B K R

Note that in Example 1, the first entry 21 of the final column vector is
computed as (—2)(2) + (5)(—3) + (8)(5), which is precisely the dot product of
' -2
the first row vector [2 —3 5] of the matrix with the column vector [ 5/.
8
Similarly, the second component —34 of our answer is the dot product of the
second row vector [—1 4 —7] with this column vector.

In a similar fashion, we see that the ith component of a column vector 4b
will be equal to the dot product of the ith row of A4 with the cohimn vector b.
We should also note from Example 1 that the number of components in a row
of 4 will have to be equal to the number of components in the column vector b
if we are to compute the product 4b.

We have illustrated how to compute a product Ab of an m X n matrix with
an n X 1 column vector. We can extend this notion to a product AB of an
m X n matrix 4 with an # X s matrix B.

The product 4B is the matrix whose jth column is the product of A4
with the jth column vector of B.

Letting b; be the jth column vector of B, we write 4B = C symbolically as

L

Ab’lblz---b,=Ab[Abz---Ab:.
T

Because B has s columns, C has s columns. The comments after Example !
indicate that the ith entry in the jth column of AB is the dot product of the ith
row of A with the jth column of B. We give a formal definition.

L

DEFINITION 1.8 Matrix Multiplication

Let A = [a;] be an m X n matrix, and let B = [b,]] be an n X s matrix.
The matrix product AB is the m X s matrix C = [¢;], where ¢; is the dot
product of the ith row vector of 4 and the jth column vecior of B.

=
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We illustrate the choice of row i from 4 and column j from B to find the
element ¢; in AB, according to Definition 1.8, by the equation

(an —a, |
. by, by; by
AB=1[c)=| % — G ||| | [,
bﬂl ' bnj bnx

Rp——

where
¢; = (ith row vector of A) - (jth column vector of B).
In summation notation. we have

C; = auby + apby + - - - + a,b,

= i ayby. ©6)
k=1

Notice again that 4B is defined only when the second size-number (the
number of columns) of 4 is the samc as the first size-number (the number of
rows) of B. The product matrix has the shape

(First size-number of 4) X (Second size-number of B).
Let Abe a2 X 3 matrix, and iet B be a 3 X 5 matrix. Find the sizes of AB and
BA, if they are defined.

Because the second size-number, 3, of 4 equals the first size-number, 3, of B,
we see that 4B is defined; it is a 2 X 5 matrix. However, B4 is not defined,
because the second size-number, 5, of B is not the same as the first
size-number, 2, of 4. =

Compute the product

3 ] 41 28]
[4 6_2} 30 1 1.
-2 3 5 -3

The product is defined, because the left-hand matrix is 2 X 3 and the
right-hand matrix is 3 X 4; the product will have size 2 x 4. The entry in the
first row and first column position of the product is obtained by taking the dot
product of the first row vector of the left-hand matrix and the first column
vector of the right-hand matrix, as follows:

(=2)(4) + (3)3) + Q)(~2) = -8 + 9 — 4 = 3.



EXAMPLE 4

The entry in the second row and third column of the product is the dot product
of the second row vector of the left-hand matrix and the third column vector of
the right-hand one:

@)+ @B+ (=2)(5)=8+6—10 =4,

and so on, through the remaining row and column positions of the product.
Eight such computations show that

[—2 3 2} 1T S s 8 9-13
4 62| 2 0 L 4T[0 4 2 i

Examples 2 and 3 show that sometimes AB is defined when BA is not. Even
if both AB and BA are defined, however, it need not be true that AB = BA:

[ Matrix multiplication is not comniutative.

Let

|62 _[o1
A—[3 5] and B—[z 5].

Compute AB and BA.

HISTORICAL NOTE MAaTRIX MULTIPLICATION originated in the composition of linear substitu- £
tions, fully explored by Carl Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae of [
1801 in connection with his study of quadratic forms. Namely, if F = Ax? + 2Bxy + Cy?issucha J
form, then the linear substitution

x=ax' + by y=cx'+dy ® E
transforms F into a new form F' in the variables x' and y'. If a second substitution :
X =ex" +fyn yr - gxn + hyw (il)

transforms F' into a form F” in x”, y", then the composition of the substitutions, found by
replacing X', 3’ in (i) by their values in (ii), gives a substitution transforming F into F": E
x = (ae + bg)x" - (af + bh)y" y = (ce + dg)x" + (¢f + dh)y". (iii
The coefficient matrix of substitution (iii) is the product of the coefficient matrices of substitutions g
(i) and (ii). Gauss performed an analogous computation in his study of substitutions in forms in 3
three variables, which produced the rule for multiplication of 3 X 3 matrices. ]
Gauss, however, did not explicitly refer to this idea of composition as a “multiplication.”
That was done by his student Ferdinand Gotthold Eisenstein (1823—-1852), who introduced the 4
notation S X T to denote the substitution composed of S and T. About this notation Eisenstein JE
wrote, “An algorithm for calculation can be based on this; it consists of applying the usual rules for -4
the operations of muitiplication, division, and exponentiation to symbolical equations between 3§
linear systems; correct symbolical equations are always obtained, the sole consideration being that 2
the order of the factors may not be altered.”
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We zompute that

10 28 15 29

=49 na=[ 23]

Of course, for a square matrix 4, we denote 44 by 4%, 444 by A%, and so
on. It can he shown that matrix multiplication is associative; that is,

A(BC) = (4B)C

whenever the produci is defined. This is not difficult to prove from the
definition, although keeping track of subscripts can be a bit challenging. We
Icave the proof as Exercise 33, whose solution is given in the back of this text.

The n x n Identity Matrix

Let I be the n X n matrix [ay] such that a; = 1 fori=1,...,nand q;= O for
i #j. That is,

oo =
o —-o
—_—o o
coo
)—‘l
_
1

000 --- 1] _O 1]
where the large zeros above and below the diagonal in the second matrix

indicate that each entry of the matrix in those positions is 0. If A is any m X n
matrix and B is any 7 X s matrix, we can show that

A=A and IB = B.

We can understand why this is so if we think about why it is that

3l =l A-b

Because of the relations 4] = 4 and IB = B, the matrix I is called the n X n
identity matrix. It behaves tor multiplication of # X n matrices exactly as the
scalar 1 behaves for multiplication of scalars. We have one such square icentity
matrix for each integer 1, 2, 3, . . . . To keep notation simple, we denote them
allby I, ratherthan by I, I,, I, . . . . The size of I will be clear from the context.

The identity matrix is an example of a diagonal matrix—namely, a square
matrix with zero entries except possibly on the main diagonal, which extends
from the upper left corner to lower right corner.

Other Matrix Operations

Although multiplication is a very important matrix cperation for our work,
we wiil have occasion to add and subtract matrices, and to multiply a matrix
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by a scalar, in later chapters. Matrix addition, subtraction, and scalar mul-
tiplication are natural extensions of these same operations for vectors
as defined in Section 1.1; they are again performed on entries in corresponding
positions.

DEFINITION 1.9 Matrix Addition

Let A = [a;] and B = [b;] be two matrices of the same size m X n. The
sum A + B of these two matrices is the m X n matrix C = [¢;], where
C‘-j = a!! + bu.

That is, the sum of two matrices of the same size is the matrix of that
size obtained by adding corresponding entries.

Find

e

4 -

The sum is the matrix

Find
1 -3 -5 4 6
{2 4}*{ 3 7 —1}"
The sum is undefined, because the matrices are not the same size. =

Let 4 be an m X n matrix, and let O be the m X n matrix all of whose &
entries are zero. Then,

A+O0=0+4=A4.

The matrix O 1s called the m X n zero matrix; the size of such a zero matrix is
made clear by the context. =

DEFINITION 1.10 Scalar Multiplication

Let A = [a;], and let r be a scalar. The product r4 of the scalar r and the
matrix A is the matrix B = [b;] having the same size as 4, where

b; = ra;.
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,)‘——2 ]
L —
Multiplying each entry of the matrix by 2. we obtain the matrix

6l

Find

For matrices 4 and B of the same size, we define the difference 4 — B to be
A-B=4+(-1)B.

The entries in 4 — B are obtained by subtracting the entries of B from entries
in the corresponding positions in /.

If

3 -1 4 (-1 0 5]
A—{O 2_5} and B—[ 4 -2 lJ‘

find 24 — 3B.
We find that

2A—3B=[ 9 -2 _7}.

-12 10 ~13

We introduced the transpose operation to change a row vector to a column
vector, or vice versa, in Section [.!. We generalize this operation for
applicaticn to matrices, changing all the row vectors to column vectors, which
results in all the column vectors becoming row vectors.

DEFINITION 1.11 Transpose of a Matrix; Symmetric Matrix

The matrix B is the transpose of the matrix 4, written B = 47, if each

entry by in B is the same as the entry a; in 4, and conversely. If 4 is a
matrix and if 4 = A7, then the matrix 4 is symmetric.

Find A7 if
1 4 5
4= [—3 2 7]
We have
| -3l
AT =14 2|.
5 7

Notice that the rows of 4 become the columns of 47. &
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A symmetric matrix must be square. Symmetric matrices arise in some
applications, as we shall see in Chapter 8.

Fill in the missing entries in the 4 X 4 matrix

- 5 -6 8
.3
-2 1 0 4

11 -1
to make it symmetric.

Because rows must match corresponding columns, we obtain

5 -6 -2 &
-6 3 1 11
-2 1 0 4
8 11 4 -1 L]

In Example 10, note the symmetry in the main diagonal.
We have explained that we will often regard vectors in R” as column
vectors. If a and b are two column vectors in R”, the dot product a - b can be

written in terms of the transpose operation and matrix multiplication— E

namely,

bH
Strictly speaking, a™bisa 1 X 1 matrix, and its sole entry is a « b. Identifying a

1 x 1 matrix with its sole entry should cause no difficulty. The use of Eq. (7)
makes some formulas given later in the text much easier to handle.

Properties of Matrix Operations

For handv reference, we box the properties of matrix algebra and of the -
transpose operation. These properties are valid for all vectors, scalars, &
and matrices for which the indicated quantities are defined. The exercises ¢
ask for proofs of most of them. The proofs of the properties of matrix Jg
algebra not involving matrix multiplication are essentially the same as the §
proofs of the same properties presented for vector algebra in Section 1.1. 3
We would expect this because those operations are performed just on cor- J

responding entries, and every vector can be regarded as either a 1 X » or an
n X | matrix.

|

L i
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Properties of Matrix Algebra

A+B=B+4
A+B)-C=4+(B+C0)
A+0=0+4=4
rd+ B)=rd + rB
(r+s8)Ad=r4d+s4
(r5)A = r(sA)

(rA)B = A(rB) = r(4B)
A(BC) = (4B)C
IA=Aand B[ =B
AB + C)=4B + AC
(4 + B)C=AC + BC

Commutative law of addition
Associative law of addition

Identity for addition

A left distributive law

A right distributive law

Associative law of scalar multiplication
Scalars pull through

Associative law of matrix multiplication
Identity for matrix muitiplication

A left distributive law

A right distributive law

Properties of the Transpose Operation

ANT=4 Transpose of tie transpose
(4 + B)T = A" + B" Transpose of a sum
(AB)" = B'AT Transpose of a product

Prove that A(B + C) = AB + AC for any m X n matrix 4 and any n X s matrices

Band C.

Let A = [a,], B=[by] and C = [c]. Note the use of j, which runs from 1 to n, as
both the second index for entries in A4 and the first index for the entries in B
and C. Tie entry in the ith row and kth column of A(B + C) is

2, a,(b + ¢).
Jj=1

By familiar properties of real numbers, this sum is also equal to

n n n
.2 (@yby + ayep) = 2 ayby + 2 Q;Ci
J=1 J J=1

which we recognize as the sum of the entries in the ith row and kth columns of
the matrices 4B and AC. This completes the proof. =
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| SUMMARY é

An m X nmatrix is an ordered rectangular array of numbers containing m
rows and # columns.

oy

2. An m x 1 matrix is a column vector with m components, and a 1 X n
matrix is a row vector with n components.

3. The product Ab of au m X n matrix 4 and a column vector b with
components b,, b,, ..., b, is the column vector equal to the linear §
combination of the column vectors of 4 where the scalar coefficient of the
Jth column vector of 4 is b,

4. The product 4B of an m X n matrix 4 and an # X s matrix B is the m xs ¢
matrix C whose jth column is A times the jth column of B. The entry ¢ in ¢
the ith row and jth column of C'is the dot product of the ith row vector of 4
and ihe jth column vector of B. In general, AB # BA.

5. If 4 = [a,] and B = [b;] are matrices of the same size, then 4 + B is the §
matrix of that size with cntry a; + b in the ith row and jth column.

6. For any matrix 4 and scalar r, the matrix r4 is found by multiplying each
entry in A4 by r. _

7. The transpose of an m X nmatrix 4 is the n X m matrix A7, which has as its §
kth row vector the kth column vector of A.

8. Properties of the matrix operations are given in boxed displays on page 45. ]

EXERCISES

In Exercises 1-16, let

N 2 -1 -4 2
A={_2 L 3}, B={4 l"ﬂ, c=| 0 6|, ad D=| 3 5.
| 4 0 -1 5 -1 3 -3 3 1 -3
Compute the indicated quantity, if it is defined. 17. Let
2.0 0
A=10 -1 0
0
1. 34 9. (24)(5C) ; 001l
a. Find 4%
j' 33+ 5 1?' (%D J4B) b. Find 4'.
) f,- iﬂ , 18. Let
4. B+ C 12. (40) 0 0 -1
5.C-D 13. (24 - B)D A4=(0 2 0
6. 44 — 2B 14. ADB 2 00
7. AB 15. (AT)4 a. Find A2
8. (CD)T 16. BC and CB b. Find 47,



19.

20:

21.

HH\

23.

24,

Consider the row and column vectors

[ 4
3,-1]andy ={—l .

x = [-2,
3

Compute the matrix products xy and yx.

Fill in the missing entries in the 4 X 4
matrix

1 -1 5
4 8

2 -7 -1
6 3

so that the matrix is symmetric.

Mark each of the following True or False.
The statements involve matrices 4, B, and
C that are assumed to have appropriate
size.

a. If A = B, then AC = BC.

b. If AC = BC, then 4 = B.

¢. IfAB = 0,thend =0QorB=0.

d. If4+ C=B+ C ihend =B

e. If 4> =1 then 4 = *I.

__f IfB=A*and ifAisn X nand
symmetric, then b; = 0 for
i=1,2,...,n

g. If AB = C and if two of the matrices are
square, then so is the third.

h. If AB = Cand if C is a column vector,
then so is B.

i. If 42 = I, then A" = [ for all integers
n=2.

j. If A2 = I, then A" = ] for all even integers
n=2.

. a. Prove that, if 4 is a matrix and x is a row

vector, then x4 (if defined) is again a row
vector.

b. Prove that, if 4 is a matrix and y is a
column vector, then Ay (if defined) is
again a column vector.

Let 4 be an m X n matrix and let b and ¢ be
column vectors with n components. Express
the dot product {4b) - (4¢) as a product of
matrices.

The product Ab of a matrix and a column
vector is equal to a linear combination of
columns of 4 where the scalar coefficient of
the jth column of 4 is 4; In a similar
fashion, describe the product ¢4 of a row
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vector ¢ and a matrix 4 as a linear
combination of vectors. [HinT: Consider
((e)1)7]

In Exercises 2534, prove that the given relation
holds for all vectors, matrices, and scalars for
which the expressions are defined.

37.

38.

39.

40.

41.

.A+B=B+4

. A+B+C=4+B+0)
. (r+ 54
. (r5)4 = r(sA)
. AB + ()
(AT =4
. {A+ B =47+ BT
. (AB)T = BTAT

=rA + sA4

= AB + AC

(AB)C = A(BC)

[V ¥ 24

. (rA)B = A(rB) = r(4B)
. If Bis an m X n matrix and if B = A7, find

the size of
a A,

b. A4,
c. ATA.

. Let v and w be column vectors in R". What

is the size of vw™? What relationships hold
between yw” and wv’?

The Hilbert matrix H, is the » X » matrix
[h;), where h; = 1/(i + j — 1). Prove that the
matrix H, is symmetric.

Prove that, if A is a square matrix, then the
matrix 4 + A7 is symmetric.

Prove that, if 4 is a matrix, then the matrix

AA” is symmetric.

a. Prove that, if 4 is a square matrix, then
(ADT = (A7) and (477 = (A7) [HINT:
Don’t try to show that the matrices have
equal entries; instead use Exercise 32.]

b. State the generalization of part (a), and
give a proof using mathematical
induction (see Appendix A).

a. Let 4 be an 71 X n matrix, and let e; be
the n X 1 column vector whose jth
component is 1 and whose other
components are 0. Show that Ae; is the
jth column vector of 4.
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b. Let A and B be matrices of the same size.
i. Prove that, if Ax = 0 (the zero vector)
for all x, then 4 = O, the zero matrix.
[Hint: Use part (a).]
ii. Prove that, if Ax = Bx for all x, then
A = B. [Hint: Censider 4 ~— B.]

Let A and B be square matrices. Is
(A + B =A*+ 24B + B

42.

If so, prove it; if not, give a counterexample
and state under what conditions the
equation is true.

Let A and B be square matrices. Is
(A + BY(A - B) = A* - B®?

43.

If so, prove it; if net, give a counterexample
and state under what conditions the
equation is true.

An n X n matrix C is skew symmetric if

C7 = —C. Prove that every square matrix 4
can be written uniguely as A = B + C where
B is symmetric and C is skew symmetric.

Matrix A commutes with matrix B if AB = PA.

45. Find all values of r for which

-
]

<

—_— —
S -
—_ O
(A

20 0]
010 commutes with
00 r
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46. Find all values of r for which

2 0 0] Mot
0ro commutes with 01 0|
002 101

E—l The software LINTEK includes a routine,
MATCOMP, that performs the matrix operations
described in this section. Let

4 6 0 1 -6
2 11 5 2 =5
A=1-1 2 -4 5 17
0 12 -8 4 3
10 4 6 2 -5
and
-8 15 4 —11
35 6 -2
B=, 0-1 12 5/
1 13 =15 7
L6 -8 0 -3

Use MATCOMP in LINTEK to enter and store
these matrices, and then compute ihe matrices in
Exercises 47-54, if they are defined. Write down
to hand in, if requested, the entry in the 3rd row,
4th column of the matrix.

47, 4* + 4 50. BA?
48. AB 51. BT(24) 54. (4Ty
49. AXAT) 52. ABAB)

To enter a matrix in MATLAB, start with a left bracket [ and then type the entries
- across the rows, separating the entries by spaces and separating the rows by

semicolons. Conclude with a right bracket |. To illustrate, we would enter the matrix '-

5

-1
A={13 —4} as A=[-1513-470]
7

0

and MATLAB would then print it for us to proofread. Recall that to avoid having
data printed again on the screen, we type a semicolon at the end of the data before
pressing the Enter key. Thus if we enter

A=[-1513-4;7 0}

53. (4y - 4 §

|

-
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the matrix 4 will not be printed for proofreading. In MATLAB, we can enter

A + B to find the sum

A — B to find the difference

A « B to find the product 4B

A " n to find the power A"

r+A to find the scalar multiple r4

A’ to take the transpose of 4

eye(n) for the n X n identity matrix

zeros(m,n) for an m X n matrix of 0’s, or zeros(n) if square

ones(m,n) for an m X n matrix of 1’s, or ones(n) if square

rand(m,n) for a matrix of random numbers from 0 to 1, or rand(n) if square.

In MATLAB, A(j, j) is the entry in the ith row and jth column of 4, while A(k) is
the kth entry in 4 where entries are numbered consecutively starting at the upper

left and proceeding down the first column, then down the seccnd column, etc.

45

Access your MATLAB, and erter the matrices A and B given before Exercises 47-54.

(We ask you to enter them manually this time to be sure you know how te enter

matrices.) Proofread the data for A and B. If you find, for example, thai you entered 6

rather than 5 for the entry in the 2nd row, 3rd column of A, you can correct your
error by entering A(2,3) = 5.

M1. Exercises 47-54 are much easier to do with MATI.AR than with LINTEK,

because operations in LINTEK must be specified one at a time. Find the
element in the 3rd row, 4th column of the given matrix.

a. BT(24)

b. AB{4AB)"

c. (24P -4

M2. Enter B(8). What answer did you get? Why did MATLAB give that answer?

Ma3. Enter help : to review the uses of the colon with matrices. Mastery of use of
the colon is a real timesaver in MATLAB. Use the colon to set C equal to the

5 X 3 matrix consisting of the 3rd through the 5th columns of 4. Then
compute C"C and write down your answer.

M4, Form a 5 > 9 matrix D whose first five columns are.those of 4 and whose last

four columns are those of B by

a. entering D = [A B}, which works when 4 and B have the same number of

TOWS,

b. first entering D = A and then using the colon to specify that columns 6

through 9 of D are equal to B. Use the fact that A(, j) gives the jth column

of 4.
Write down the entry in the 2nd row, 5th column of DTD.

MS5. Form a matrix E consisting of B with two rows of zeros put at the bottom
and write down the entry in the 2nd row, 3rd column of ETE by

a. entering Z = zeros (2,4) and then E = [B; Z}], which works when B and Z

have the same number of columns,
b. first entering E = B and then using the colon to specify that rows 6

through 7 of E are equal to Z. Use the fact that A(j, :) gives the ith row

of A.
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M6. In mathematics, “mean” stands for “average,” so the mean of the numbers 2,
- 4,and 9 is their average (2 + 4 + 9)/3 = 5. In MATLAB, enter help mean to
see what that function gives, and then enter mean(A). Figure out a way to
have MATLAB find the mean (average) of all 25 numbers in the matrix A4.
Find that mean and write down your answer.

M7. If Fisa 10 x 10 matrix with random entries from 0 to 1, approximately
what would you expect the mean value of those entries to be? Enter help rand,
read what it says, and then generate such a matrix F. Using the idea in
Exercise M6, compute the mean of the entries in F, and write down your
answer. Repeat this several times.

MS. Enter help ones and read what it says. Write down a statement that you could
enter in MATLAB to form from the matrix F of Exercise M7 a 10 X 10
matrix G that has random entries from —4 to 4. Using the ideas in Exercise
M6, find and write down the mean of the entries in the matrix G. Repeat this
several timess. :

M9. In MATLAB, entering mesh(X) will draw a three-dimensional picture
indicating the relative values of the entries in a matrix X, much as entering
plot(a) draws a two-dimensional picture for the entries in a vector a. Enter
I = eye(16); mesh(I) to see a graphic for the 16 X 16 identiiy matrix. Then
enter mesh(rot90(I)). Enter help rot90 and help triu. Enter X = iriu(ones(14));
mesh(X). Then enter mesh(rot99(X)j and finally mesh(rot90(X,~1)).

MATLAB has the capability to draw surface graphs of a function z = f{(x, y)
using the mesh function. This provides an excellent illustration of the use of a
matrix to store data. As you experiment on your own, you may run out of computer
memory, or try to form matrices larger than your MATLAB will accept. Entering
clear A will erase a matrix 4 from memory to free up some space, and entering clear
will erase all data previously entered. We suggest that you enter clear now before
proceeding.

MATLAB can draw a surface of z = f(x, y) over a rectangular region a < x < b,
¢ = y = d of the x,y-plane by computing values z of the function at points on a grid
in the region. We can describe the region and the grid of points where we want
values computed using the function meshdom. Review the use of the colon, using
help : if you need to, and notice that entering —3:1:3 will form a vector with first
entry —3 and successive entries incremented by 1 until 3 is reached. If we enter

X, Yj = meshdom(—3:1:3, —2:.5:2)
then MATLAB wili create two matrices X and ¥ containing, respectively, the
x-coordinates and y-coordinatcs of a grid of points in the region —3 < x =< 3 and

-2 = y = 2. Because the x-increment is | and the y-increment is 0.5, we see that
both X and Y will be 9 X 7 matrices.

Enter now
X, Y] = meshdom(—3:1:3, ~2:.5:2); (8)

and then enter X to see that matrix X and similarly view the matrix Y. We have
specified where we want the function values computed.

Enter help . to recall that entering A .+ A will produce the matrix whose entries
are the squares of the entries in A. Thus enteringZ. =X « X + Y .+ Y in MATLAB
will produce a matrix Z whose entry at a position corresponding to a grid point (x, )




1.4 SOLVING SYSTEMS CF LINEAR EQUATIONS 51

will be x* + ¥ Enlering mesh(Z) will then create the mesh graph over the region
~3=x=3 -2=y=<2 ”

Enter now
Z=XaX+YaY; (9)
mesh(Z) (10)

10 see this graph.

M10. Using the up arrow, modify Eq. (8) to make both the x-increment and the
y-increment 0.2. After pressing the Enter key, use the up arrow to get Eq. (9)
and press the Enter key to form the larger matrix Z for these new grid
points. Then create the mesh graph using Eq. (10).

2

M11. Modify Eq. (9) ard create the mesh graph for z = x> — ).

MIlz. Change Eq. (8) so that the region willbe -3 = x =3 and ~3 = y = 3 still
with 0.2 for increments. Form the mesh graph forz = 9 — x* ~ y2.

M12. Mesh graphs for cylinders are especially nice. Draw the mesh graphs for
a. z=x
h. z= )~

M14. Change the mesh domain to —4# < x < 47, -3 < y =< 3 with x-increment
0.2 and y-increment 6. Recall that 7 can be entered as pi. Draw the mesh
graphs for
a. the cylinder = = sin(x),
b. the cylinder z = x sin(x), remembering to use .x, and
c. the function z = v sin(x), which is not a cylinder but is pretty.

SOLVING SYSTEMS OF LINEAR EQUATIONS

As we have indicated, solving a system of linear equations is a fundamental
problem of linear algebra. Many of the computational exercises in this text
involve solving such linear systems. This section presents an algorithm for
finding all solutions of any linear system.

The solution set of any system of equations is the intersection of the
solution sets of the individual equations. That is, any solution of a system must
be a solution of each equation in the system; and conversely, any solutior of
every equation in the system is considered to be a solution of the system.
Bearing this in mind, we start with an intuitive discussion of the geometry of
linear systems; a more detailed study of this geometry appears in Section 2.5.

The Geometry of Linear Systems

requently, students are under the impression that a linear system containing
the same number of equations as unknowus always has a unique solution,
whereas 2 system having more equations than unknowns never has a solution.
The geometric interpretation of the problem shows that these statements are

not true.
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FIGURE 1.31
Theplanex +y + z = 1.

We know that a single linear equation in two unknowns has a line in the
plane as its solution set. Simiiariy, a singie linear equation in three unknowns
has a plane in space as its solution set. The solution set of x + y + z = 1 is the
plane sketched in Figure 1.31. This geometric analysis can be extended to an
equation that has more than three variables, but it is difficult for us to
represent the solution set of such an equation graphically.

Two lines in the plane usually intersect at a single point; here the word
usually means that, if the lines are selected in some random way, the chance

HISTORICAL NOTE Svstems oF Linear Equations are found in ancient Babylonian and J
Chinese texts dating back well over 2000 years. The problems are generally stated in reai-life g
terms, but it is clear that they are artificial and designed simply to train students in mathematical 3
procedures. As an example of a Babylonian problem, consider the following, which has been
slightly modified from the original found on a clay tablet from about 300 8.c.: There are two fields
whose total area is 1800 square yards. One produces grain at a rate of 5 bushel per square yard, the g
other at a rate of% bushel per square yard. The total yield of the two fields is | 100 bushels. What is
the size of each field? This probiem leads to the system

X+ y=1800
2+ Y- 100
= .

A typical Chinese problem, taken from the Han dynasty text Ninme Chapiers of the 4
Mathematical Art (about 200 B.c.), reads as follows: There are three classes of corn, of which three
bundles of the first class, two of the second, and one of the third make 39 measures. Two of the &
first, three of the second, and one of the third make 34 measures. And one of the first, two of the &
second. and three of the third make 26 measures. How many measures of grain are contained in
one bundle of each class? The system of equations here is

Ix+2r+ -=139
x+ 3+ =34

X+ 21+ 32 = 26.
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y y

~4x + 6y = —8

’ of 12 3
—1-/
A'
kzx—3y=4
I
FIGURE 1.32 FIGURE 1.33
2x ~ 3y = 4 is parallel to 2x—3y=4and —4x + 6y = —8
2x -3y =6. are the same line.

that they either are parallel (have empty intersection) or coincide (have an
infinite number of points in their intersection) is very small. Thus we see that a
system of two randomly selected equations in two unknowns can be expected
to have a unique solution. However, it is possible fur the system to have no
solutions or an infinite number of solutions. For example, the equations

2x =3y =4
2x - 3y=6

correspond to distinct parallel lines, as shown in Figure 1.32, and the system
consisting of these equations has no solutions. Moreover, the equations

2x - 3y=4
—4x + 6y = -8

correspond to the same line, as shown in Figure 1.33. All points on this line are
solutions of this system of two equations. And because it is possible to have
any number of lines in thc plane—say, fifty lines—pass through a single point,
it is possible for a system of fifty equations in only two unknowns to have a
unique solution.,

Similar illustrations can be made in space, where a linear equation has as
its solution set a plane. Three randomly chosen planes can be expected to have
a unique poini in common. Two of them can be expected to intersect in a line
(see Figure 1.34), which in turn can be expected to meet the third plane at a
single point. However, it is possible for three planes to have no point in
common, giving rise to a linear system with no solutions. It is also possible for
all three planes to contain a common line, in which case the corresponding
linear system will have an infinite number of solutions.
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FIGURE 1.34
Two planes intersecting in a line.

Elementary Row Operations

To now deseribe onerations that can be used to modify the eauations of a
We now describe operations that can be used to modify the equations of a

linear system to obtain a system having the same solutions, but whose [
solutions are obvious. The most general type of linear system can have m [
equations in n unknowns. Such a system can be written as

ayx, +apx, + + 1+ ax, = b

QX+ apX, + 0+ ax, = b,
AuX) + QpXy + =+ - + X, = b,,.

System (1) is completely determined by its m X n coefficient matrix 4 = [a;] ’:'
and by the column vector b with ith component b, The system can be written ¥
as the single matrix equation ’

Ax = b, Op -

where x is t.e¢ column vector with ith component x;. Any column vector s such F
that As = b is a solution of system (1).
The augmented matrix or partitioned matrix

a, ay *c ay | b
@ ay a4 | b

3z
aml amZ e amn bm

is a shorthand summary of system (1). The coefficient matrix has been:
augmented by the column vector of constants. We denote matrix (3) by [4 | b].
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We shall see how to determinc-all solutions of system (1) by manipulating
augmented matrix (3) using elementary row operations. The elementary row
operations correspond to the following familiar operations with equations of
system (1):

R1 Interchange two equations in system (1).

R2 Multiply an equation in system (1) by a nonzero constant.

R3 Replace an equation in system (1) with the sum of itself and a multiple
of a different equation of the system.

It is clear that operations R1 and R2 do not change the solution sets of the
equations tiey affect. Therefore, they do not change the intersection of the
solution sets of the equations; that is, the solution set of the system is
unchanged. The fact that R2 does not change the solution set and the familiar
algebraic principle, “Equals added to equals yield equals,” show that any
solution of both the ith and jth equations is also a solution of a new jth
equation obtained by adding s times the ith equation to the jth equation. Thus
operation R3 yields a system having all the solutions of the original one.
Because the original system can be recovered from the new one by multiplying

HISTORICAL NOTE A MATRIX-REDUCTION METHOD of solving a system of linear equations
vccurs in the ancient Chinesé work, Nine Chapters of the Mathematical Art. The author presents
the following solution to the system
3x+2p+ z=39
2x+ 3y + z=34
x + 2y + 3z = 26.

The diagram of the coefficients is to be set up on a “counting board™:

1 2 3
2 3 2
311
26 34 39

The author then instructs the reader to multiply the middle column by 3 and subsequently to
subtract the right column “as many times as possible”; the same is *2 be done teo the left cclumn.
The new diagrams are then

10 3 0 0 3
205 2 4 5 2
3 1 1 and g | g
26 24 39 39 24 39

The next instruction is to multiply the lefi column by 5 and then to subtract the middle column as
many times as possible. This gives

0 0 3
0 5 2
36 1 1
99 24 39

The system has thus been reduced to the system 3x + 2y + z = 39, Sy + z = 24, 36z = 99, from
which the complete solution is easily found.
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the ith equation by —sand adding it to the new jth equation (an R3 operation),
we see that the original system has all the solutions of the new one. Hence R3,
too, does not alter the solution set of system (1).

These procedures applied to system (1) correspond to elementary row
operations applied to augmented matrix (3). We list these in a box together
with a suggestive notation for each.

Elementary Row Operations Notations

(Row interchange) Interchange the ith and jth row R, <R
vectors in a matrix.

(Row scaling) Multiply the ith row vector in a matrix R, — sR;
by a nonzero scalar s.

(Row addition). Add to the ith row vector of a R,— R; + sR,
matrix § times the jth row vector.

L

If a matrix B can be obtained from a matrix 4 by means of a sequence of

elementary row operations, then 4 is row equivalent to B. Each elementary row .

operation can be undone by another of the same type. A row-addition

operation R,— R; + sR; can be undone by R;— R; — sR,. Row scaling, R;— sR, 3
for s # 0, can be undone using R, — (1/5)R,, while a row-interchange operation _J

undoes itself. Thus, if B is row equivalent to 4, then A is row equivalent to B; 3
we can simply speak of row-equivalent matrices A and B, which we denote by :
A~ B.(See Exercise 55 in this regard.) We have just seen that the operations on
a linear system Ax = b corresponding to these elementary row operations on

the augmented matrix [4 | b] do not change the solution set of the system. This 3 E

gives us at once the following theorem, which is the foundation for the
algorithm we will present for solving linear systems.

THEOREM 1.6 Invariance of Solution Sets Under Row Equivalence

If {4 | b] and [H | ¢] are row-equivalent augmented matrices, then the
linear systems 4x = b and Hx = ¢ have the same solution sets.

Row-Echelon Form

We will solve a linear system 4x = b by row-reducing the avgmented matrix
[4 | b] to an augmented matrix [H | ¢], where H is a matrix in row-echelon
Jorm (which we now define). .
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DEFINITION 1.12 Row-Echelon Form, Pivot

A matrix is in row-echelon form if it satisfies two conditions:

1. All rows containing only zeros appear below rows with nonzero
entries. ]

2. The first nonzero entry in any row appears in a column to the right
of the first nonzero entry in any preceding row.

For such a matrix, the first nonzero entry in a row is the pivot for that
TOW.

Determine which of the matrices

(==

A b

>

it
SO —
oo w
—_ O N

I
O —
O w A
(=)
=
OO W

O = W Ln
L

SO O W
SO = N

are in row-echelon form.

Matrix 4 is not in row-echelon form, because the second row (consisting of all
zero entries) 1s not below the third row (which has a nonzero entry).

Matrix B is not in row-echelon form, because the first nonzero entry in the
second row does not appear in a colurn to the right of the first nonzero entry
in the first row.

Matrix C is in row-echelon form, because both conditions of Definition
1.12 are satished. The pivots are —1 and 3.

Matrix D satisfies both conditions as well, and is in row-echelon form. The
pivots are the entries 1. ®

Solutions of Hx = ¢

We illustrate by examples that, if a linear system Hx = ¢ has coefficient matrix
H in row-echelon form, it is easy to determine all solutions of the system. We
color the pivots in H in these examples.

Find all solutions of Hx = ¢, where

-5 -1 3| 3
[H|lcj=| 0 3 5| 8
0 0 2| -4
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The equations corresponding to this augmented matrix are

=56, - x+35= 3
3%, + 5x,= 8
2x, = —4.
From the last equation, we obtain x; = —2. Substituting into the second

equation, we have
3x, + 5(-2)=8, 3x,=18, x,=6.

Finally, we substitute these values for x, and x; into the top equation,
obtaining

=5x, - 6+ 3(—2) =3, -5x, = 15, x, = —3.
Thus the only solution is
-3
x=| 6|,
-2
or equivalently, x, = =3, x, =6, x, = =2. =

The procedure for finding the solution of Hx = c illustrated in Example 2 3
is called back substitution, because the values of the variables are found in 4
backward order, starting with the variable with the largest subscript. '
By multiplying each nonzeio row in [H | b] by the reciprocal of its pivot, -3
we can assume that each pivot in H is 1. We assume that this is the case in the 38
next two examples. r

Use back substitution to find all solutions of Hx = ¢, where

1-3 5| 3
Hlc=0 1 2| 2
0 0 0] -1

The equation corresponding to the last row of this augmented matrix is
0x, + Ox, + Ox; = —1.

This equation has no solutions, because the left side is 0 for any values of the } :
variables and the right side is —1. = 5

DEFINITION 1.13 Consistent Linear System
A linear system having no solutions is inconsistent. If it has one or

more solutions, the linear system is said to be consistent.

Now we illustrate a many-solutions case.
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EXAMPLE 4 Use back substicution to find all solutions of Hx = ¢, where

1 -3 0 5 0‘ 4

) 0 0 1 2 0] -7

Hlel=1g 0 o o 1‘ 1l
0 0 0 0 0! o

SOLUTION The linear system corresponding to this augmented matrix is

x,—3x, +5x = 4
X+ 2x, =-7
Xxs= 1.

We solve each equation for the variable corresponding to the colored pivot in
the matrix. Thus we obtain

.X|=3X2_5.X4+4

Xy = —2x,— 1 @)
x5 = 1.
E Notice that x, and x, correspond to columns of H containing no pivot. We can
assign any value r we please to x, and any value s to x,, and we can then use
system (4) to determine corresponding values for x,, x;, and x;. Thus the
£ system has an infinite number of solutions. We describe all solutions by the
3 vector equation
i x] [3r- 5s+ 41
X r
X=|x=| -25s-7 for any scalars r and s. )
X4
X 1

We call x, and x, free variables, and we refer to Eq. (5) as the general solution of

the system. We obtain particular solutions by setting r and s equal to specific

values. For example, we obtain

[ 25]
2

forr=s5=1 and —-1|f0rr:2,s:~3. L)

-3
1

Gauss Reduction of Ax = b to Hx = ¢

We now show how to reduce an augmented matrix [4 | b] to [H | ¢], where H is
in row-z=chelon form, using a sequence of elementary row operations. Exam-
ples 2 through 4 illustrated how to use back substitution afterward to find
solutions of the system Hx = ¢, which are the same as the solutions of Ax = b,
by Theorem 1.6. This procedure for solving Ax = b is known as Gauss
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reduction with back substitution. In the box below, we give an outline for
reducing a matrix 4 to row-echelon form.

EXAMPLE 5 Reduce the matrix

2 -4 2 -2
2 -4 3 -4
4 -8 3 -2
0 0 -1 2

to row-echelon form, making all pivots 1.

SOLUTION We follow the boxed outline and color the pivots of 1. Remember that the
symbol ~ denotes row-equivalent matrices.

g :3 § -_: Multiply the first row by 4, to produce a pivot of I in ;
4 -8 3 -2 the next matrix.
0 0 -1 2 R - %R,
[1 =2 1 ~1] Add -2 times row 1 to row 2, and then add —4
2 ~4 3 -4/ timesrow I to row 3, to obtain the next matrix.
T4 -8 3 -2
0 0-1 2 R,— R, = 2R,; R,— R, — 4R,
I =21 =1| Cross off the first shaded column of zeros (mentally), 3
~ 0 0 I —=2| toobtain the next shaded matrix. 3
0 0-1 2
0 0 -1 2
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1 -2 1 -1
_ 6 0 1 -2/ Addrow 2 torows 3 and 4. to obtain the finai
0 0 -1 2| matrix.
0 0 -1 2
3 i Ry— Ry + iRy; R,— R, + IR,
1 -2 -1 -1
0 0 1 -2
10 0 0 0
0 0 0 O

This last matrix is row-echelon form, with both pivots equal to 1.

To solve a linear system Ax = b, we form the augmented matrix [4 | b] and
row-reduce it to [H | ¢], where H is in row-echclon form. We can follow the
steps outlined in the box preceding Example 5 for row-reducing 4 to H. Of
course, we always perform the elementary row operations on the full augment-
ed matrix, including the entries in the column to the right of the partitior.

Solve the linear system
X2 - 3X3 = _5
2x,+ 3%, - x3= 7
4x, + 5x, — 2x; = 10.

We reduce the corresponding augmented matrix, using elementary row
operations. Pivots are colored.

(0 1-3]|-5] [2 3-1] 7

2 3.-1| 7|~|0 s1.=3.| -5 Ri o R,
4 5-2|10] |4 5 -2 10

2 3 -1 71 2 3 -1 7]

0 1 -3|-5/~j0 1 -3]|-5 Ry— Ry = 2R,
4 5 -2 10] [0 -1 0| -4

2 3 -1 71 2 3 -1 7]

0 1 -3|-5~0 1 -3|-5] R;— R; + 1R,
0 -1 0| -4 |0 0-3]-9

HISTORICAL NOTE THE GAUSS SOLUTION METHOD is so named because Gauss described itin a
paper detailing the computations he made to determine the orbit of the asteroid Pallas. The
parameters of the orbit had to be determined by observations of the asteroid over a 6-year period
from 1803 to 1809. These led to six linear equations in six unknowns with quite complicated
coefficients. Gauss showed how to solve these equations by systematically replacing them with a
new system in which only the first equation had all six unknowns, the second equation included
five unknowns, the third equation only four, and so on, until the sixth equation had but one. This
last equation could, of course, be easily solved; the remaining unknowns were then found by back
substitution.
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From the last augmented matrix, we could proceed to write the corresponding
equations (as in Example 2) and to solve in succession for x, x,, and x, by back
substitution. However, it makes sense to keep using our shorthand, without
writing out variables, and to do our back substitution in terms of augmented
matrices. Starting with the final augmented matrix in the preceding set, we
obtain -

23 -1 7| (2 -1 7 |
0 1 -3|-5~l0 1-3|-5  Ry— iR

0 0-3|-9 [0 C 1 3 (This shows that x, = 3.)

2 3 -1 77 [2 3 0] 10] |

0 1 -3|-5~10 1 O 4 R,— R, + 1R, R,— R, + 3R,
0 0 14 3 [00 1] 3 (This shows that x, = 4.)

2 3 010 2 0 0] -2

0 1 0] 4/~(0 1 0 4| R, >R, - 3R,

0 0 1] 3 [0 0 1] 3 (This shows that x, = —1.)

We have found the solution: x = [x,, X, X;] = [~1,4,3]. =

In Example 6, we had to write down as many matrices to execute the back
substitution as we wrote to reduce the original augmented matrix to row-

echelon form. We can avoid this by creating ze10s above as well as below each ‘

pivot as we reduce the matrix to row-echelon form. This is known as the
Gauss-Jordan method. We show in Chapter 10 that, for a large system, it takes
about 50% more time for a computer to use the Gauss—Jjordau method than to
use the Gauss method with back substitution illustrated in Example 6; there

are actually about 50% more arithmetic operations involved. Creating the

zeros above the pivots requires less computation if we do it after the matrix is
reduced to row-echelon form than if we do it as we go along. However, when
one is working with pencil and paper, fixing up a whole column in a single step
avoids writing so many matrices. Our next example illustrates the Gauss-
Jordan procedure.

Determine whether the vector b = [1, —7, —4] is in the span of the vectors v = E -

[2,1,1]and w = [1, 3, 2].

We know that bis in sp(v, w) if and only if b = x,v + x,w for some scalars x, and -

X,. This vector equation is equivalent to the linear system
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Peducing the appropriate augmented matrix, we obtain

2 o) 1] v 30=7 1 31-7 [t o] 2]
‘13—7~21 1 ~|0 =5 | 15/~j0 I | —3]
[bo20 -4 [1 2]-4 [0-1] 3/ (0 0] 0O
R, < R, Ri=R,=2R, R,— IR,
(to avoid Ry—=>Ry- IR, R, - R, -3R,
fractions) Ry—> R, + IR,

The left side of the final augmented matrix is in reduced row-echelon form.
From the solution x; = 2 and x, = —3, we see that b = 2v — 3w, whichis indeed
insp(v,w). =

The linear system Ax = b displayed in Eq. (1) can be written in the form

a, ap a,| T[b

ay ay oy b,
X, + X + +x,| - |=

aml I_am2J Lamn Dm

This equation expresses a typical column vector b in R™ as a linear combina-
tion of the column vectors of the matrix 4 if and only if scalars x;, x,, . . . , x,
can be found to satisfy that equation. Example 7 illustrates this. We phrase this
result as follows:

Let A be an m X n matrix. The linear system Ax = b is consistent if
and only if the vector b in R™ is in the span of the column vectors
of A.

A matrix in row-echelon form with all pivots equal to 1 and with zeros
above as well as below each pivot is said to be in reduced row-echelon form.
Thus the Gauss—Jordan method consists of using elementary row operations
on an augmented matrix {4 | b] to bring the coeflicient matrix 4 into reduced

HISTORICAL NOTE THE JORDAN HALF OF THE GAUSS—-JORDAN METHOD is essentizlly a syste-
matic technique of back substitution. In this form, it was first described by Wilthelm Jordan
(1842-1899), a German professor of geodesy, in the third (1888) edition of his Handbook of
Geodesy. Although Jordan’s arrangement of his calculations is different from the one presented
here, partly because he was always applying the method to the symmetric system of equations
arising out of a least-squares application in geodesy (see Section 6.5), Jordan’s method uses the
same arithmetic and arrives at the same answers for the unknowns.

Wilhelm Jordan was prominent in his field in the late ninettenth century, being involved in
several geodetic surveys in Germany and in the first major survey of the Libyan desert. He was the
founding editor of the German geodesy journal and was widely praised as a teacher of his subject.
His interest in finding a systematic method of solving large systems of linear equations stems from
their frequent appearance in problems of triangulation.
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row-echelon form. It can be shown that the reduced row-echelon form of 2
matrix 4 is unique. (See Section 2.3, Exercise 33.)

The examples we have given illustrate the three possibilities for soiutions
of a linear system—namely, no solutions (inconsistent system), a unique
solution, or an infinite number of solutions. We state cnis formally in a
theorem and prove it.

THEOREM 1.7 Solutionsof Ax =b

Let Ax = b be a linear system, and let [4 | b] ~ [H | ¢], where H is in
row-echelon form.

1. The system Ax = b is inconsistent if and only if the augmented
matrix [H | c] has a row with all entries 0 to the left of the partition
and a nonzero entry to the right of the partition.

2. If Ax = b is consistent and every column of H contains a pivot, the
system has a unique solution.

3. If Ax = b is consistent and some cclumn of H has no pivot, the
system has infinitely many solutions, with as many free variables as
there are pivot-free columns in H.

PROOF If[H|c]hasan ith row with ali entries O to the left of the partition and
a nonzero entry ¢, to the right of the partition, the corresponding ith equation
in the system Hx = ¢is Ox, + Ox, + + - -+ + Ox, = ¢, which has no solutions; 2
therefore, the system Ax = b has no solutions, by Theorem 1.6. The next
paragraph shows that, if H contains no such row, we can find a solution to
the system. Thus the system is inconsistent if and only if H contains such
a row.

Assume now that [H | ¢] has no row with all entries 0 to the left of the
partition and a nonzero entry to the right. If the ith row of [H | ¢] is a zero row
vector, the corresponding equation 0x, + Ox, + - - + + Ox, = 0 is satisfied for
all values of the variables x;, and thus it can be deleted from the system Hx = ¢
Assume that this has been done wherever possible, so that [H | ¢] has no zero
row vectors. For each j such that the jth column has no pivot, we can set ¥,
equal to any value we please (as in Example 4) and then, starting from the last
remaining equation of the system and working back to the first, solve in
succession for the variables corresponding to the columns containing the
pivots. If some column j has no pivot, there are an infinite number of solutions
because x; can be set equal to any value. On the other hand, if every colums:
has a pivot (as in Examples 2, 6, and 7), the value of each x; is uniquely
determined. A

With reference to item (3) of Theorem 1.7, the number of free variables in
the solution set of a system Ax = b depends only on the system, and not on the
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way in which the matrix 4 is reduced to row-echelon form. This follows from
the uniqueness of the reduced row-echelon form. (See Exercise 33 in Section
2.3)

Elementary Matrices

The elementary row operations we have performed can actually be carried out
by means of matrix multiplication. Although it is not efficient to row-reduce a
matrix by multiplying it by other matrices, representing row reduction as a
product of matrices is a useful theoretical tool. For example, we use elemen-
tary matrices in Section {.5 to show that, for square matrices 4 and C, if AC =
I, then CA = I. We use them again in Section 4.2 to demonstrate the
multiplicative property of determinants, and again in Section 10.2 to exhibit a
factorization of some square matrices 4 into a product LU of a lower-
triangular matrix L and an upper-triangular matrix U.
If we interchange its second and third rows, the 3 X 3 identity matrix

10 0] 100}
I=|01 0| becomes E=(00 1]
00 1] 010

If A = [a;] is a 3 X 3 matrix, we can compute E4, and we find that

10 0f|a, a, a; a4y 4y ag
EA =00 l||ay ay a;|=|ay ay asy)|.
10 1 0]{ay ay asy a4y Ay A4y

We havc intcrchanged the second and third rows of A by multiplying A on the
left by E.

DEFINITION 1.14 Elementary Matrix

Any matrix that can be obtained from an identity matrix by means of
one elementary row operation is an elementary mairix.

We leave the proof cf the following theorem as Exercises 52 through 54.

THEOREM 1.8 Use of Elementary Matrices

Let A be an m X n matrix, and let E be an m X m elementary matrix.
Multiplication of 4 on the left by E effects~the same elementary
row operation on A that was performed on the identity matrix to
obtain E.
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Thus row reduction of a matrix to row-echelon form can be accomplished by
successive multiplication on the left by elementary matrices. In other words, if
A can be reduced to H through elementary row operations, there exist
elementary matrices E, E,, . . . , E, such that

H=(E - EEM.

Again, this is by no means an efficient way to execute row reduction, but such
an algebraic representation of H in terms of 4 is sometimes handy in proving
theorems.

Let
0 1 -3
A=12 3 -1j.
4 5 -2

Find a matrix C such that CA4 is a matrix in row-echelon form that is row
equivalent to 4.

We row reduce 4 to row-echelon form H and write down, for each row
operation, the elementary matrix obtained by performing the same operation
on the 3 X 3 identity matrix.

Reduction of A Row Operation Elementary Matrix
[0 1 -3 [0 1 0
4=12 3 -1 R, ~ R, E=I1 0 0

4 5 -2] 0o 0 1
2 3 -1] 1 0 o

~0 1 -3 R,— R, - 2R, E,=| 0 1 0
4 5 -2 -2 0 1
2 3 -1] 10 o

~0 1 -3 R,—> R, + IR, E;=0 1 0
0 -1 0] 0 1 1
2 3 -1

~10 1 -3|=H.

0 0 -3

Thus, we must have Ey(E,(E,4)) = H; so the desired matrix C is

0 10
C=EEE =1 0 0|
1 -2 1

To compute C, we do not actually have to multiply out E,F,E,. We know that :
multiplication of E, on the left by E, simply adds —2 times row 1 of E, to its
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row 3, and subsequent multiplication on the left by £, adds row 2 to row 3 of
the matrix E,E,. Thus we can find C by executing the same row-reduction steps
on / that we executed to change 4 to H—namely,

1 0 0] o 10} 0 1 o] [0 1 O
G 1 0|~[l 0 0/~|t 0 o0|~[l 0 o]
0 0 1] [0 0 1J 0-2 1) [1-2 1

I E, E,E, C = EEE,

We can execute analogous elementary column operations on a matrix by
multiplying the matrix on the right by an elementary matrix. Column
reduction of a matrix 4 is not important for us in this chapter, because it does
not preserve the solution set of Ax = b when applied to the augmented matrix
[4 | B]. However, we will have occasion to refer to column reduction when
computing determinants. The effect of multiplication of a matrix 4 on the
right by elementary matrices is explored in Exercises 36-38 in Section 1.3.

SUMMARY

1. A linear system has an associated augmented (or partitioned) matrix,
having the coefficient matrix of the system on the left of the partition and
the column vector of constants on the right of the partition.

2. The elementary row operations on a matrix are as follows:

(Row interchange) Interchange of two rows,
(Row scaling) Multiplication of a row by a nonzero scalar;
(Row addition) Addition of a multiple of a row to a different row.

3. Matrices 4 and B are row equivalent (written 4 ~ B) if A can be
transformed into B by a sequence of elementary row operations.

4. If Ax = band Hx = c are systems such that the augmented matrices [.4 | b]
and [H | c] are row equivalent, the systems 4x = b and Hx = ¢ have the
same solution set.

S. A matrix is in row-echelon form if:

a. All rows containing only zero entries wve grouped together at the
bottom of the matrix.

b. The first nonzero element (the pivot) in any row appears in a column
to the right of the first nonzero element in any preceding row.

6. A matrix is in reduced row-echelon form if it is in row-echelon form and,
in addition, each pivot is 1 and is the only nonzero element in its column.
Every matrix is row equivalent to a unique matrix in reduced row-
echelon form.

7. In the Gauss method with back substitution, we solve a linear system by
reducing the augmented matrix so that the portion to the left of the
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partition is in row-echelon form. The solution is then found by back
substitutioii.

The Gauss-Jordan method is similar to the Gauss method, except that
pivots are adjusted to be | and zeros are created above as well as below
the pivots.

=

9. A linear system Ax = b has no solutions if and only if, after [4 | b] is
row-reduced so that A4 is transformed into row-echelon form, there exists
a row with only zero entries to the left of the partition but with a nonzero
entry to the right of the partition. The linear system is then inconsistent.

10. If Ax = b is a consistent linear system and if a row-echelon form H of 4 E
has at least one column containing no (nonzero) pivot, the system hasan [
infinite number of solutions. The free variables corresponding to the
columns containing no pivots can be assigned any values, and the
reduced linear system can then be solved for the remaining variables.

11. An elementary matrix E is one obtained by applying a single elementary B

row operation to an identity matrix /. Multiplication of a matrix 4 on the
left by E effects the same elementary row operation on A.

EXERCISES

In Exercises 1-6, reduce the matrix o (a) In Exercises 7-12, describe all solutions of a
row-echelon jorm, and (b) reduced row-echelor: linear system whose corresponding augmented N
form. Answers to (a) are not uniqgue, so your matrix can be row-reduced 1o the given matrix. If J
answer may differ from the one at the back of the requested, also give the indicated particular
text. solution, if it exists.
21 4} [ 2 4 _2} 7. [l -2 ’ 3},solution with x; = 2
Lt 32 2.1 4 8 3 0 1 412
13 -1 6 -1 -3 0 12 3 3
] 8.0 1 2| -1
2 -1 3] 0 0 2| 4
3 -1 1 2 0‘
11 -3 3 1020 1
I 5 5 9J| 9. {0 113 —2},
) 0000 O
0 0 3 —2} solution with x; = 3, x, = =2
4. ? ‘3’ ; 421| I 1 0 3 0] -4
- 10, 0 0 1 -1 0 0
13 0 1 4 0 0 0 0 1| =20
] 0 0 0 0 0] 0
5. L-3 0 0-1 solution with x, = 2, x; = 1
2 -6 2 4 0
o 0 1 3 _4J 1000 0
) {0 100 2
0 0 1 2-1 4 1.10010]| -5
6.0 0 0 1 -t 3 \‘0 001 2
2 4 -1 3 2 —IJ 0000 ‘ 0
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-

24, np+F2v -3+ ox =2

1 -1 20 3‘ ¥

0 0 0 t 4 21 3y, +6x, = By~ 2y, = |
10 0 0 0 o’—w

00 0 0 0l o

In Exercises 25-28, determine whether the vector

. . - . b is inn the span of the vectors v,
- In Exercises {3-20, find all solutions of the given pan of the vectors v,

linear system, using the Gauss method with back 3 0 1 -3
substitution. 5. b =|5,v, = 2|, v, =| 4l.v;=]|-1
3 4 -2 5

13. 2x — y= 8 "8 1 —4 1
6x — Sy =32 26. b =[26(.v,=|3|,v,=|~12|,v,=| 5
4 9

I - —

. 4x, - 35 = 10 L] 12 !

8x, — x, =10 (15 [ é 2-| —;
- - -] 2 = |-

15 y+t z= 6 27'{)_[—8"‘_‘—1“’3_—Z’V‘* Ll
Ix—y+ z= -7 3J | o] 5 -8
x+y-3z=-13 [0

0

16. 2x+ y—-3z= 0 YiT
bx+3y—-8= 0 {_4_
2x— r+5z=-4 (2 1 -3 1

17. x,—2x,= 3 28.b=_] v=1]v=_2v= 2
- = 14 SR Y
X = T1xy,= =2 :7] - 4

18. x, —3x,+ x=2 _ ;

3, — 8%, + 2, = 5 " %

19 x, +4x,-2x,= 4 0 )

W Ty — X = =2 29. Mark each. of the follown?g True or False.
2+ 0%, ~ Ty = 1 — a. Every linear syst'em with the same
number of equations as unknowns has a

20 x = 3x 4 2x - x, = 8 unique sofution.
3x, = Ix; +x,=0 —b. Every linear system with the same

number of equations as unknowns has at

In Exercises 21-24, find ail solutions of the linear Jeast one solution.

; . alt solutions of the linear ___ ¢. A linear system with more equations than

Svstem, using the Gauss-Jordan method. unknowns may have an infinite number

of sofutions.

21 3x, - 2x,= -8 —d. A linear system with fewer equations
4x, + 5x, = =3 than unknoyvrfs may hav.e no solution.

. . ___e. Every matrix is row equivalent to a

22 2% + 8x, = 16 unique matrix in row-echelon form.
5x, — 4x, = -8 __ f. Every matrix is row equivalent to a

23, x —2G+ x, =6 unique matrix in reduced row-echelon
, ) 3 form.

SR I Rl ___g. If[4]| b]and [B| c] are row-equivalent
9% = 3x, - x,—Tx, =4 partitioned matrices, the linear systems
-
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Ax = b and Bx = ¢ have the same 40. Determine all values of the b, that make the
solution set. linear system
___h. A linear system with a square coefficient

matrix 4 has a unique solution if and X X = X% = by

only if 4 is row equivalent to the identity 2+ x=b
matrix. . X, —x = b

— i. A linear system with coefficient matrix 4 .
has an infinite number of solutions if and consistent.
only if 4 can be row-reduced to an 41. Determine all values b,, b,, and b; such that
echelon matrix that includes some b = [b,, b,, by] lies in the span of v, =
column containing no pivot. [1,1,0],v,=[3, -1,4],and v, =

_ j. A consistent linear system with coefficient [-1,2,-13].
matrix 4 has an infinite number of 42. Find an elementary matrix E such that
solutions if and only if 4 can be
row-reduced 10 an echelon matrix that 131 41 I3 1 4
includes some column containing no E0 1 21|=(0 1 2 1.
pivot. 3451 [0-5 2 -1l

43. Find an elementary matrix E such that

In Exercises 30-37, describe all possible values for (l 314 1314
the unknowns x; so that the matrix equation is EO0121=(2749]
valid. [3 451 (3451

44. Find 2 matrix C such that
30. 2[x, )[4 71=[-2 1]

12 1 2
31. 4[x; x]+ 20x, 31=[-6 18] C[3 4} =[O __2}
32 [x x] [ ;} -1 42) [0 -6
: : 45. Find a matrix C such that
L Ix 1 3 -1 =N 14
3. [x x) [2 4J 0 -4 12 34
o [l =5 [x 13 Cl3 4|=1|4 2|
34. - 1| =
N vl b
35. [x1 x|l 1]=(0 1
X, x| |10 31 In Exercises 46-51, let A be a 4 x 4 matrix. Find
30 4 a matrix C such that the result of applying the
36. [x, x)] l‘,, : _,} =[3 3-7] given sequence of elementary row operations to A
= can also be found by computing the product CA.
37. [X‘ x113 5] _fr o)
X3 x4J [2 3 [0 lJ 46. Interchange row | and row 2.
38. l_)elf:rmine all values of the b; that make the 47. Interchange row ! and row 3; multiply row 3
linear system by 4.
X +2x,= b 48. Multiply row | by 5; interchange rows 2 and
3; add 2 times row 3 to row 4.
3x, + 6x, = b, . .
49. Add 4 times row 2 to row 4; multiply row 4
consistent. by —3; add 5 times row 4 to row 1.
39. Determine all values b, and b, such that b = 50. Interchange rows | and 4; add 6 times row 2
[by, b)) is alinear combination of v, = [1, 3] to row |; add -3 times row | to row 3; add

and v, = [5, —1]. —2 times row 4 to row 2.
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51. Add 3 times row 2 to row 4; add —2 times
row 4 to row 3; add S times row 3 to row 1;
add —4 times row | to row 2.

Exercise 24 in Section 1.3 is useful for the iiext
three exercises.

52. Prove Theorem 1.8 for the row-interchange
operation.

53. Prove Theorem 1.8 for the row-scaling
operation.

54. Prove Theorem 1.8 for the row-addition
operation.

55. Prove that row equivalence ~ is an
equivalence relation by verifying the
following for m X n matrices 4, B, and C.
a. A~ A (Reflexive Property)

b. If A ~ B, then B ~ A.
(Symmetric Property)

¢. IfA~Band B~ C,thend ~ C.
(Transitive Property)

56. Find a, b, and c such that the parabola y =
ax? + bx + ¢ passes through the points
(1, =4), (=1, 0), and (2, 3).

57. Find a, b, ¢, and d such that the quartic
curve y = ax* + bx* + ¢x? + d passes
through (1, 2), (-1, 6), (=2, 38), and (2, 6).

58. Let A be an m X n matrix, and let ¢ be a
column vector such that Ax = ¢ has a unique
solution.

a. Prove that m = n.

b. If m = n, must the system 4x = b be
consistent for every choice of b?

c. Answer part (b) for the case where
m>n

A problem we meet when reducing a matrix with
the aid of a computer involves determining when
a computed entry should be 0. The computer
might give an entry as 0.00000001, because of
roundoff error, when it should be 0. If the
computer uses this entry as a pivot in a future
step, the result is chaotic! For this reason, it is
common practice to program the computer to
replace all sufficiently small computed entries with
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0. where the meaning of "sufficiently small”" must
e specified in terms of the size of the nonzero
entries in the original matrix. The routine
YUREDUCE in LINTEK provides drill on the
steps involved in reducing a matrix without
requiring burdensome computation. The program
computés the smallest nonzero coefficient
magnitude m and asks the user to enter a number
r (for ratio); all computed entries of magnitude
less than rm produced during reduction of the
coefficicnt matrix will be set equal to zero. In
Exercises 59-64, use the routine YUREDUCE,
specifying r = 0.0001, 1o solve the linear system.

59. 3x, - x,=-10
Tx, +2x,= 7
2x, = 5x, = =37
60. 5x, — 2x, = 11
8x,+ x,= 3
6x, — 5x, = -4
6l. Tx, -2+ x,=-14
—4x, + 5x, - 3x;= 17
5, — X3t 2x= -7
62. -3x,+ S5x:+2x3= 12
5% ~ Tx; + 6x;= —16
1x, = 17x, + 2x, = —40
63. x 26+ x;- x t+2x,= 1
2+ x,—4x;— x,t+ Sx;= (6
8, - +3xg- x - x= 1
4x, — 2x, + 3x; — 8x, + 2x, = -5
Sx;+ 3x, —4x; + Tx, — 6x;= 7
64. x, - 2x,+ x3— x;+2x= 1
2+ Xy —4x;~ X+ 5x= 10
Co8x - o+ 3 - x, o X = =5
4x, — 2x, + 3x; — 8x, + 2x5= -3
Sxp+ 3x, —dx; + Tx, —6xs = |

The routine MATCOMP in LINTEK can also be
used to find the solufions of a linear system.
MATCOMP will bring the left portion of the
augmented matrix to reduced row-echelon form
and display the result on the screen. The user can
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then find the solutions. Use MATCOMP in the 66. Solve the linear system in Exercise 61.
remaining exercises. 67. Solve the linear system in Exercise 62.

65. Find the reduced row-echelon form of the 68. Solve the linear system in Exercise 63.

matrix in Exercise 6, by taking it as a
coefficient matrix for zero systems.

MATLAB

When reducing a matrix X to reduced rcw-echelon form, we may need to swap row
i with row k. This can be done in MATLAB using the command

X(li k1) = X(Ik i],2).

If we wish to multiply the /th row by the reciprocal of x; to create a pivot ! in the
ith row and jth column. we can give the command

X(0,:) = X)X ().

When we have made pivots 1 and wish to make the entry in row k, column j equal
to zero using the pivot in row i, column j, we always multiply row i by the negative
of the entry that we wish to make zero, and add the result to row k. In MATLAR,
this has the form

X(k,:) = X(k,:) — Xk, j)«X(,:).
Access MATLAB and enter the lines

X=onesd);i=1;j=2k =3
X(i k],:) = X([k il,2)

X(@1,:) = X(1,:)/X(,5)

X(k,:) = X(k,) ~ X(k, )«X(i,),

which vou can then access using the up-arrow key and edit repeatedly to row-reduce a
matrix X. MATLAB will not show a partition in X—you have to supply the partition
mentally. If vour installation contains the data files for our text, enter fhclsd now. We
will be asking vou to work with some of the augmented matrices used in the exercises
for this section. In our data file, the augmented matrix for Exercise 63 is called E63.
etc. Solve the indicated system by setting X equal to the appropriate matrix and
reducing it using the up-arrow key and editing repeatedly the three basic commands
above. In MATLAB, only the commands executed most recently can be accessed by
using the up-arrow key. To avoid losing the command to interchange rows, which is
seldom necessary, execute it at least once in each exercise even if it is not needed.
(Interchanging the same rows twice leaves a matrix unchanged.) Solve the indicated
exercises listed below.

M1. Exercise 21 M4, Exercise 61
V2. Exercise 23 MS. Exercise 62
M3. Exercise 60
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The command rref(A) in MATLAB will reduce the martrix A to reduced row-echelon
form. Use this command to solve the following exercises.

M6. Exercise 6 MS8. Exercise 63
M?7. Exercise 24 M9. Exercise 64

{MATLAB contains a demo command rrefmovie(A) designed to show the
step-by-step reduction of A, but with our copy and a moderately fast computer. the
demo goes so fast that it is hard to catch it with the Pause key in order to view it. If
you are handy with a word processor, you might copy the file rrefinovi.m as
rrefmovp.m. and then edit rrefmovp.m to supply ,pause at the end of each of the
four lines that start with A( . Entering rrefmovp(A) from MATLAB will then run
the altered demo, which will pause after each change of a matrix. Strike any key to
continue after a pause. You may notice that there seems to be unnecessary row
swapping to create pivots. Look at the paragraph on partial pivoting in Section 10.3
to understand the reason for this.)

INVERSES OF SQUARE MATRICES

Matrix Equations and Inverses

A system of n equations in » unknowns x,, X,, ..., X, can be expressed in
matrix form as

AXx = b. (1)

where A4 is the n x 7 coefficient matrix, x is the n X 1 column vector with jth
entry x;, and b is an n X 1 column vector with constant entries. The analogous
equation using scalars is

ax =b (2)

for scalars aand b. If a # 0, we usually think of solving Eq. (2) for x by dividing
by a, but we can just as well think of solving it by multiplying by 1/a. Breaking
the solution down into small steps, we have

1 {

(—)ax = / )b Multiplication by 1/a
Jb Associativity of multiplication
1

Ix =[=|b Property of 1/a
)b. Property of 1 .

Let us see whether we can solve Eq. (1) similarly if A is a nonzero matrix.
Matrix multiplication is associative, and the » X n identity matrix / plays the
same role for multiplication of n X x matrices that the number 1 plays for
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multiplication of numbers. The crucial step is to find an # X n matrix C such
that CA = I, so that C plays for matrices the role that 1/a does for numbers. If
such a matrix C exists, we can obtain from Eq. (1)

C(Ax) = Cb  Multiplication by C
. (CA)x = Cb  Associativity of multiplication

Ix = Cb Property of C

x = Cb, Property of I
which shows that our column vector x of unknowns must beithe column vector
Cb. Now an interesting problem arises. When we substitute x = Cb back into
our equation Ax = b to verify that we do indeed have a solution, we obtain Ax
= A(Cb) = (AC)b. But how do we know that AC = I from our assumption that
CA = I? Matrix multiplication is not a commutative operation. This problem
does not arise with our scalar equation ax = b, because multiplication of real
numbers is commutative. It is indeed true that for square matrices, if C4 =
then AC = I, and we will work toward a proof of this. For examole, the

- -G

illustrates that

_[29 _[-4 9
A_tl 4] and C—[ 1_2}

sefy A — T = A
satisfy C4 = I = AC.

Unfortunately, it is not true that, for each nonzero #n X n matrix 4, we can g

find an n X n matrix Csuch that C4 = AC = I. For example, if the first column

of 4 has only zero entries, then the first column of CA also has only zero entries

for any matrix C, so CA # I for any matrix C. However, for many important
n X n matrices 4, there does exist an #» X n matrix C such that C4 = AC =L
Let us show that when such a matrix exists, it is unique.

THEOREM 1.9 Uniqueness of an Inverse

Let A be an n X nmatrix. If Cand D are matrices such that 4C = D4 =
I, then C = D, In particular, if AC = CA = I, then C is the unique
matrix with this property.

PROOF Let C and D be matrices such that AC = D4 = I. Because matrix .

multiplication is associative, we have

D(AC) = (DA)C.

|
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But, because AC = [ and D4 = I, we find that
DACYy=DI=D and (DH)C =1C=C.

Therefore, C = D.

Now suppose that AC = CA = I, and let us show that C is the uniquc
matrix with this property. To this end, supgpose also that AD = D:{ = I. Then
we have AC = I = DA, so D = C, as we just showed. a

From the title of the preceding theorem, we anticipate the following
definition.

DEFINITION 1.15 Invertible Matrix

An n X nmatrix 4 is invertible if there exists an n X n matrix C such
that CA = AC = I, the n X n identity matrix. The matrix C is the
inverse of 4 and is denoted by A~'. If 4 is ot invertible, it is singular.

Although A™! plays the same role arithmetically as ¢! = 1/a (as we showed
at the start of this section), we will never write 4™ as 1/4. The powers of an
invertible n X n matrix A4 are now defined for all integers. That is, for m1 > 0,
A™ is the product of m factors 4, and A~ is the product of m factors A~'. We
consider A° to be the #n X n identity matrix .

Inverses of Elementary Matrices

In Section 1.4, we saw that each elementary row operation can be undone by
another (possibly the same) clementary row operation. Let us see how this fact

HISTORICAL NOTE THE NOTION OF THE INVERSE OF A MATRIX first appears in an 1855 note of
Arthur Cayley (1821-1895) and is made more explicit in an 1858 paper entitled A Memoir on
the Theory of Matrices.” In that work, Cayley outlines the basic properties of matrices. noting that
most of these derive from work with sets of linear equations. In particular, the inverse comes from
the idea of solving a system

X=ax+by+cz
- Y=ax+by+cz
Z=ax+by+ 2

for x, y, z in terms of X, Y, Z. Cayley gives an explicit construction for the inverse in terms of the
determinants of the original matrix and of the minors.

In 1842, Arthur Cayley graduated from Trinity College, Cambridge, but could not find a
suitable teaching post. So, like Sylvester, he studied law and was called to the bar in 1849. During
his 14 years as a lawyer, he wrote about 300 mathematical papers; finally, in 1863 he became a
professor at Cambridge, where he remained until his death. It was during his stint as a lawyer that
he met Sylvester; their discussions over the next 4. years were extremely fruitful for the progress
of algebra. Over his lifetime, Cayley produced about 1000 papers in pure mathematics, theoretical
dynamics, and mathematical astronomy.
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translates to the invertibility of the elementary matrices, and a description of
their inverses.

Let E, be an elementary row-interchange matrix, obtained from the
identity matrix I by the interchanging of rows i and k. Recall that E 4 effects
the interchange of rows i and k of 4 for any matrix A such that E 4 is defined.
In partieular, taking 4 = E,, we see that E,E, interchanges rows i and k of E,,
and hence changes E, back to I. Thus, »

EE =1

Consequently, E, is an invertible matrix and is its own inverse.

Now let E, be an elementary row-scaling matrix, obtained from the
identity matrix by the multiplication of row i by a nonzero scalar r. Let E,’ be
the matrix obtained from the identity matrix by the multipiication of row i by
1/r. It is clear that

EyE, = E\EY = 1,
so E, is invertible, with inverse E,’.
Finally, let E, be an elementary row-addition matrix, obtained from I by

the addition of r times row i to row k. If E,’ is obtained from I by the addition
of —r times row i to row k, then

EJE, = E,E, = I.

We have established the following fact:

Every elementary matrix is invertible.
(I |

Find the inverses of the elementary matrices

010 300 104
E=|100|, E,=|01 0|, and E;=|010
001 001 001
Because E, is obtained from
100
I=1010 .
001
by the interchanging of the first and second rows, we see that £~ = E,.

The matrix E, is obtained from 7 by the multiplication of the first row by 3,

so we must multiply the first row of 7 by % to form
1
1o o]
E ' = 010

001J




15 INVERSES OF SQUARE MATRICES 77

Finally, E; is obtained frcn I by the addition of 4 times row 3 to row 1. To
form E,”' from I, we add —4 times row 3 to row [, s0

1 0 —4]
E-'=10 1 0|
0 0 1 "

Inverses of Products

The next theorem is fundamental in work with inverses.

THEOREM 1.10 Inverses of Products

Let A and B be invertible n X n matrices. Then 4B is invertible, and
(AB)™' = B47L.

PROOF By assumption, there exist matrices A™' and B! such that 447! = 47'4
= I and BB™!' = B'B = I. Making use of the associative law for matrix
multiplication, we find that

(ABY(B'A™) = [A(BB)JA™ = (ADA™ = Ad™ = I
A similar computation shows that (B~'4™')(4B) = I. Therefore, the inverse of

ABis B'4™'; that is, (AB)' = B7'4"". a

It is instructive to apply Theorem 1.10 to a product E, - - - E,E,E, of
elementary matrices. In the expression

(E, ... EEENM,

the product E, * - « E,E,F, performs a sequence of eiementary row operations
on A. First, E, acts on 4; then, E, acts on E,4: and so on. To undo this
sequence, we must first undo the last elementary row ~peration, performed by
E, This is accomplished by using E,!. Continuing, we should perform the
sequence of operations given by

El—1E2~1E3—1 PO El—l

in order to effect (E, - - - E\E,E)™.

A Commutativity Property

We are now in position to show that if C4 = I, then AC = I. First we prove a
lemma (a result preliminary to the main result).
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LEMMA 1.1 Condition for Ax = b to Be Solvable for All b

Let A be an n X 7 matrix. The linear system Ax = b has a solution for
every choice of column vector b € R" if and only if 4 is row equivalent
to the » X n identity matrix /.

PROOF Let b be any column vector in R” and let the augmented matrix
[4 | b] be row-reduced to [H | ¢] where H is in reduced row-echelon form.
If H is the identity matrix /, then the linear system Ax = b has the solution
XxX=c

For the converse, suppose that reduction of A to reduced row-echelon
form yields a matrix A that is not the identity matrix. Then the bottom
row of H must have every entry equal to 0. Now there exist elementary
matrices E,, E,, . . ., E, such that (E, - - - E,F\)4 = H. Recall that every
elementary matrix is invertible, and that a product of elementary matrices
is invertible. Let b = (&, - - - E,E)'e,, where e, is the column vector
with 1 in its ath component and zeros elsewhere. Reduction of the aug-
mented matrix [4 | b] can be accomplished by multiplying both 4 and b on
the left by £, - - - E,E,, so the reduction will yield [H | e,], which represents
a system of equations with no solution because the bottom row has entries 0
to the left of the partition and 1 to the right of the partition. This shcws that
if H is not the identity matrix, then Ax =-b does not have a solution for
someb € R 4

THEOREM 1.11 A Commutativity Property

Let A and C be n X n matrices. Then C4 = I'if and only if AC = L.

PROOF To prove that C4 = I if and only if AC = I, it suffices to prove that if
AC = ], then CA4 = ], because the converse statement is obtained by reversing
the roles of 4 and C.

Suppose now that we do have AC = I. Then the equation Ax = b has a
solution for every column vector b in R"; we need only notice that x = Cbisa
solution because A(Cb) = (AC)b = Ib = b. By Lemma 1.1, we know that A4 is
row equivalent to the n X n identity matrix /, so there exists a sequence of
elementary matrices E,, F. . ... E, such that (E, - -- E,E)4 = [ By
Theorem 1.9. the two equations

(E, - - EEN)A=1 and AC =1

imply that £, - - - [,E, = C.so we have C4 = [ also. a
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Computation of Inverses

Let A = [a;] be an #n X n matrix. To find A", if it exists, we must find an # X n
matrix X = [x;] such that AX = ]—that is. such that

ay, @y cccoayl[xy Xeccox, ] [1 o s 0
Ay Gy 20 || Xy X" 07 Xy, 0ot --- 0

' =| . 3
Ay Ay "0 Q|| X X2 ™ "0 Xy I_O O SR

Matrix equation (3) corresponds to #° linear equations in the n? unknowns x;;
there is one linear equation for each of the »° positions in an # X » matrix. For
example, equating the entries in the row 2, column 1 position on each side of
Eq. (3), we obtain the linear equation

Ay Xyt ApXyy + 00y, = 0.

Of these »’ linear equations, n of them involve the n unknowns x; for i =
1,2,..., n; and these equations are given by the column-vector equation

X 1
X 0
A M =1- b (4)
X OJ
which is a square system of equations. There are also # equations involving the
n unknowns x,, fori = 1,2, ..., n; and so on. In addition to solving system
(4), we must solve the systems
X1 0] Xin 0
X1 i Xon 0
A=A =], (5)
X, 0 X 1

where each system has the same coefficient matrix 4. Whenever we want to
solve several systems 4x = b, with the same coefficient matrix but different
vectors b, we solve them all at once, rather than one at a time. The main job in
solving a linear system is reducing the coefficient matrix to row-echelon or
reduced row-echelon form, and we don’t want to repeat that work over and
over. We simply reduce one augmented matrix, where we line up all the vectors
b, to the right of the partition. Thus, to solve all the linear systems in Egs. (4)
and (5), we form the augmented matrix

ay Gy -t a4y, 1
Ay ap " @y, | 0

()

Ay Qm " gy 00 --- 1
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which we abbreviate by [4 | I]. The matrix 4 is to the left of the partition, and
the identity matrix I is to the right. We then perform a Gauss-Jordan [
reduction on this augmented matrix. By Theorem 1.9, we know that if 47 [
exists, it is unique, so that every column in the reduced row-echelon form of 4 E
has a pivot. Thus, 47! exists if and only if the augmented matrix (6) can be
reduced to

10 «++ 0ey ¢ "+ ¢,

0 1 0 ch 622 M CZn
9

00 -+ 1 |cy Co "' Cp

where the n ¥ n identity matrix 7 is to the left of the partition. The n X n
solution matrix C = [¢;] to the right of the partition then satisfies AC = 1, 50
A7 = C. This is an efficient way to compute A™'. We summarize the

computation in the following box, and we state the theory in Theorem 1.12,

Otherwxsc, 47! doesnot exist.

For the matrix 4 = ﬁ Z}, compute the inverse we exhibited at the start of this

section, and use this inverse to solve the linear system

2x + 9y = =5
x+d4y= 1

Reducing the augmented matrix, we have

29| 10]_[14
1401 29
0
1

Therefore,
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If ™" exists, the solution of 4x = b is x = 4 'b. Consequently, the solution of
our system

[2 9} {x] _ [—5} - [\1 _[-4 9] {'~5} _ 83}
o[l i N i e

We emphasizc that the computation of the solution of the linear system in
Example 2, using the inverse of the coefficient matrix, was for'illustration only. -
When faced with the problem of solving a square systeni, Ax = b, one should
never start by finding the inverse of the coefficient matrix. To do so would
involve row reduction of [4 | I] and subsequent computation of 4~'b, whereas
the shorter reduction of [4 | b] provides the desired solution at once. The
inverse of a matrix is often useful in symbolic computations. For example, if
A is an invertible matrix and we know that A8 = 4C, then we can deduce that
B = C by multiplying both sides of AB = AC on the left by 47!, If we have
r systems of equations

Axl = bl) sz = bz, PR AX, = b,,

all with the same invertible n X » coefficient matrix 4, it might seem to be
more efficient (for large r) to solve all the systems by finding 4™' and computing
the coluinn vectors

x, =A%, x,=A47"'h, .., X, =A'b,.

Section 10.1 will show that using the Gauss method with back substitution on
the augmented matrix [4 | b, b, -+ - b] remains more efficient. Thus,
inversion of a coefficient matrix is not a good numerical way to solve a linear
system. However, we will find inverses very useful for sclving other kinds of
problems.

THEOREM 1.12 Conditions for A™" to Exist

The following conditions for an » X » matrix 4 are equivalent:
(i} A is invertible.
(i1} A is row equivalent to the identity matrix .
(iti) The system Ax = b has a solution for each n-component column
vector b. -
(iv) A can be expressed as a product of elementary matrices.
(v) The span of the column vectors of 4 is R".-

PROOF  Step 2 in the box preceding Example 2 shows that parts (i) and (ii) of
Theorem 1.12 are equivalent. For the equivalence of (ii) with (iii), Lemma 1.1
shows that Ax = b has a solution for each b € R" if and only if (ii) is true. Thus,
(ii) and (iii) are equivalent. The equivalence of (iii) and (v) follows from the
box on page 63.
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Turning to the equivalence of parts (ii) and (iv), we know that the matrix 4
1S TOW equivalent te Jif and only if there is a sequence of elementary matrices

E,E, ... EssuchthatE, - - - E,EA= I;and this is the case if and only if 4 is
expressible as a product 4 = E,"'E,”' - - - E;" of elementary matrices. 4

EXAMPLE 3 Using Example 2, express ﬁ ZJ as a product of elementary matrices.

SOLUTION The steps we performed in Example 2 can be applied in sequence to 2 x 2
identity matrices to generate elementary matrices:

E = {(l) (])} Interchange rows | and 2.

E, [ } Add —2 times row 1 to row 2.

i
E,= |6 } Add —4 times row 2 to row 1.
Thus we see that E,E,E\4 =

g (011 O] 4
A= BB _L o2 9o i} ]

Example 3 illustraies the following boxed rule for expressing an invertible
matrix 4 as a product of elementary matrices.

Write in left-to-right order the inverses of the elementary matrices

’7 Expressing an Invertible Matrix A as a Product of Elementary Matrices
} corresponding to successive row operations that reduce A4 to 1.
\

EXAMPLE 4 Determine whether the matrix
¢

!

N W
[
W N

| IR |

A=| 2
3

is invertible, and find its inverse if it is.
SOLUTION We have

1 3-2] 1 0 0] [t 3 =2 1 0 0

2 530 0 1 0O/~[0~-1 1]=-2 10

-3 2-4| 0 0 1 [0 11 -10] 3 0 1
-5 3 14 -8 —1
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Therefore, A is an invertible matrix, and

14 -8 —1|
A =1-17 10 1]
(—19 1 1] : ®

Express the matrix 4 of Example 4 as a product of elementary matrices.

In accordance with the box that follows Example 3, we write in left-to-right
order the successive inverses of the elementary matrices corresponding to the
row reduction of 4 in Example 4. We obtain

tool[ t o o|[t 0 ol[t3o0
A=(210| 0 1 ollo -1 o|lo10
co01l[-3 0 1/l0 ¢ 1/lo01
rioo‘[iﬁlrioo
x[010010|01—1.
011l 11[001001J u

Determine whether the span of the vectors [1, —2, 1], (3, =5, 4], and [4, —3, 9]
is all of R®.

Let

I 3 4
A=]-2 -5 =3,
I 4 9

We have
1 3 4 134 1
-2 =5 =3|~|01 5(~|0
1 4 9% |015] (600
We do not have a pivot in the row 3, column 3 positicn, so we are not able

to reduce A4 to the identity matrix. By Theorem 1.12, the span of the given
vectors is not ail of R, =

SUMMARY

e g s e

1. Let A be a square matrix. A square matrix C such that C4 = AC = I is the
inverse of 4 and is denoted by C = A~'. If such an inverse of 4 exists, then
A is said to be invertible. The inverse of an invertible matrix 4 is unique. A
square matrix that has no inverse is called singular.

2. The inverse of a square matrix A4 exists if and only if 4 can be reduced to
the identity matrix I by means of elementary row operaticns or (equiva-
lently) if and only if 4 is a product of elementary matrices. In this case, 4 is
equal to the product, in left-to-right order, of the inverses of the successive
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elementary matrices corresponding to the sequence of row operations used "
to reduce A4 to I.

3. To find A7, if it exists, form the augmented matrix [A4 | /] and apply the
Gauss—Jordan method to reduce this matrix to [7| C]. If this can be done,
then 47" = C. Otherwise, 4 is not invertible.

4. The inverse of a product of invertiblc- matrices is the product of the
inverses in the reverse order. '

- L
' EXERCISES
In Exercises 1-8, (a) find the inverse of the square In Exercises 11 and 12, determine whether the
matrix, if it exists, and (b) express each invertible span of the column vectors of the given matrix is
matrix as a product of eiementary matrices. R
1‘[11 2 [36 10t -]
101 138 n| 01 =34
’ 1 0 -1 2
36 4. |67 -3 0 0 -1
14 8 89 -
[ Lo L1 1-2 10
500011 6.2 0 3 |2 3 0 2
o 0 -1 -3 1 -7 0 1 2-4
2 1 4 12 1 -1 2 42
R 5} . [ 5 _3 s 13. a. Show that the matrix
0 -1 1 I 0 12 _ P _31
Tle 7
L ']

is invertible. and find its inverse.
b. Use the result in (a) to find the solution
of the system of equations

In Exercises 9 and 10, find the inverse of the 2x, — 3x, = 4, 5x, — Txy = 3.

matrix, if it exists. 14. Using the inverse of the matrix in Exercise

7, find the solution of the system of

1 0 0 0 0 0 equations
NEEEE
9. ]0 0 6 30 0 ) 3x, + 2%+ 5x; =3
‘[O 0 0 0 4 O -x.+ x;=8.
0 0 O ) ;
00 SJ 15. Find three linear equations that express X, ),
iro 0 0 0 0 6~ zintermsof r.s, ¢, 1f
0 0 0 0 5 0 dv+ v+ 4z =y
10. 00 0 400 3+ e+ 5=
i0 0 3 0 0 0 o
02 0 0 0 0 b=t
it 0 0 0 0 0 [HinT: See Exercise 14.]
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17

18.

19.

20.

21.

16. Let

2 1]
31
| 2

SO -

If possible, find a matrix C such that

12
AC =10 1|
4 |

Let

A=

O —
— D
PO —

If possible, find a matrix C such that

2 1 3]
ACA=|-1 2 2|
i 4
Let
422
A=103 1]
20 1

If possible. find a matrix B such that
AB = 24.

Let
1 21
A=101 2|.
I3 2]

If possible, find a matrix B such that
AB = A* + 2A4.

Find all numbers r such that
[ 2 4 21
[ r 3|
2 1]
is invertible.

Find all numbers r such that

2 42
I r3
t 12

is invertible.
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22. Let o and B be two m X n matrices. Show
that 4 and B are row equivaient if and only
if there exists an invertible m X »m matrix C
such that 4 = B.

23. Mark each of tie following True or False.
The statements involve matrices 4, B, and
C, which are assumed to be of appropriate
size.

. a. If 4C = BC and C is invertible, then

A4 =B.
—_b. If 4B = O and B is invertible, then
A=0.
___ ¢ Il 4B = C and two of the matrices are
invcrtible, then so is the third.
——d. If AB = C and two of the matrices are
singular, then so is the third.
e. If A% is invertible, then A4 is invertible.
f. If 4% is invertible, then A? is invertible.
___ g. Every elementary matrix is invertible.
h. Every invertible matrix is an elementary
matrix.
_ __i. If A and B are invertible matrices, then
soisA+ B,and(4+ B)'=A"+ B
___j. If A and B are invertible, then so is .15,
and (4B)™' = A7'B7..

24. Show that, if 4 is an invertible n X n matrix,
then A7 is invertible. Describe (A7) in
terms of A7

25. a. If A4 is invertible, is 4 + AT always
invertible?

b. If 4 is invertible, is A + A always
invertible?

26. Let A be a matrix such that 4? is invertible.
Prove that 4 is invertible.

27. Let A and B be n x n matrices with A4
invertible.
a. Show that AX = B has the unique
solution X = 47'B.
b. Show that X = 4~'B can be found by the
following row reduction:

(4] B~ ] X

That is. if the matrix 4 is reduced to the
identity matrix /, then the matrix B will be
reduced to A7'B.
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28.

30.

31.

32.

34.

35.

b. Show that 4 is invertible if and only if
h#0.
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Note that
11 -(a+d
a b (ab)

for nonzero scalars g, b € R. Find an
analogous equality for invertible n X n
matrices 4 and B.

. An n X n matrix 4 is nilpotent if 4 = O

(the n X n zero matrix) for some positive

integer r.

a. Give ar example of a nonzero nilpotent
2 X 2 matrix.

b. Show that, if 4 is an invertible n X n
matrix, then 4 is not nilpotent.

A square matrix 4 is said to be idempotent if

i = A

4. Give an exampie of an idempotent
matrix other than O and J.

b. Show that, if a matrix A4 is both
idempotent and invertible, then 4 = I.

Show that

2

a,
b,
¢
0

t k]

cooco
coo
oH &8

is nilpotent. (See Exercise 29.)

A square matrix is upper triangular if all
entries below the main diagonal are zero.
Lower triangular is defined symmetrically.
Give an example of a nilpotent 4 X 4 matrix
that is not upper or lower triangular. (See
Exercises 29 and 31.)

. Give an example of two invertible 4 x4

matrices whose sum is singular.

Give an example of two singular 3 x 3
matrices whose sum is invertible.

Consider the 2 x 2 matrix

_ bl
=12 df

and let # = ad — bc.
a. Show that, if # # 0. then

d/h —b/h
—¢/h ath

is the inverse of A.

Exercises 36-38 develop elementary column
operations.

36. For each type of elementary mairix E,
explain how E can be obtained from the
identity matrix by means of operations on
columns.

37. Let A be a square matrix, and let £ be an
elementary matrix of the same size. Find the
effect on 4 of multiplying 4 on the right by
E. [Hivi: Use Exercise 36.)

Let 4 be an invertible square matrix. Recali
that (BA)™! = A™'B™', and use Exercise 37 to
answer the following questions:

“d
@0

a. If two rows of 4 are interchanged, how
does the inverse of the resulting matrix
compare with 4717

b. Answer the question in part (a) if,
instead, a row of 4 is multiplied by a
nonzero scalar r.

c. Answer the question in part (a) if,
instead, r times the ith row of 4 is added
to the jth row.

E"l In Exercises 39-42, use the routine YUREDUCE

in LINTEK to find the inverse of the matrix, if it
exists. If a printer is available, make a copy of the
results. Otherwise, copy down the answers to three

significant figures.

[3 -1 2]
39. (1 2 1
0 3 -4
(-2 1 4
40.1 3 6 7
113 15 =2
(2 -1 3 4
-5 2 011
0 13 26 8
|18 =10 3 0
(4 -10 3 17
20 -3 11
P 2 12 -8
L0 -16 9 -5
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n Exercises 43-48. follow the instructions for 4 1 =3 2 6
“Exercises 39-42, but use the routine MATCOMP 0 1 5 2 1
in LINTEK. Checx 1o ensure that A4™ =1 for 47.13 8 —~11 4 6
each matrix A whose inverse is found. 2 ] -8 7 2
b3 - 4 8l
43. The matrix in Exercise 9 [ 2 -1 o | 6}
44. The matrix in Exercise 10 3.1 2 4 06
45, ‘The matrix in Exercise 41 48. ? i 34 2
. . - | 1
46. The matrix in Exercise 40 3 1 4 -1 10

MATLAB

Access MATLAB and, if the data files for our text me accessible, enter fbclsS.
Otherwise, enter these four matrices by hand. [In MATLAB, In(x) is denoted by

log(x).]
-2 3 27| 37 cos 2 21/8
A=|=2 1 32, B=|VI Ind4 23|
5 -6 1.3 V2 sind 83
-32 14 53]
C=| 1.7 =36 4l
103 85 -7.6

As you work the problems, write down the entrv in the 2nd row, 3rd column poszlzon
of the answer, with four-significant-figure accuracy, to hand in.
Eriter help inv, read the information, and then use the function inv to work
problems M1 through M4.
MIl. Compute C3.
M2. Compute 4A*°B2C.
M3. Find the matrix X such that XB = C.
M4. Find the matrix X such that B°XC = A.

! Enter help / and then help \, read the information, and then use | and \ rather than
the function inv to work problems M5 through M§.

M5. Compute A 'B*C™'B.

Mé6. Compute B*CA*B.

M7. Find the matrix X such that CX = B~
M8. Find the matrix X such that AXC® = B,
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1.6 HOMOGENEQUS SYSTEMS, SUBSPACES,
AND BASES

The Solution Set of a Homogeneous System

A linear system Ax = b is homogeneous if b = 0. A homogeneous linear system
Ax = 0 is always consistent, because x = 0, the zero vector, is certainly a
soluticn. The zero vector is called the trivial solution. Other solutions are
nentrivial solutions. A homogeneous system is special in that its solution set
has a self-contained algebraic structure of its own, as we now show.

THEOREM 1.13 Structure of the Solution Set of Ax = 0

Let Ax = 0 be a homogeneous linear system. If h, and &, are solutions
of Ax = 0, then so is the linear combination rh; + sh, for any scalars r
and s.

PROOF Let h, and h, be solutions of Ax = 0, so that Ah, = 0 and 4h, = 0. By
the distributive and scalars-pull-through properties of matrix algsbra, we have
A(rh, + shy) = A(rh)) + A(sh,)
r(4h)) + s(4h,)

r0+s0=0

it

Il

for all scalars r and s. Thus the vector rh, + sh, is a solution of the system

Notice how easy it was to write down the proof of Theorem 1.13 in matrix
notation. What a chore it would have been to write out the proof using
equations with their subscripted variables and coefficients to denote a general
m X n homogeneous system!

Although we stated and proved Theorem 1.13 for just two solutions of
Ax = 0, either induction or the same proof using k solutions shows that:

-

Every linear combination of solutions of a homogeneous system
Ax = 0 is again a solution of the system.

Subspaces

The solution set of a homogeneous system Ax = 0 in n unknowns is an
example of a subset W of R" with the property that every linear combinatio of :
vectors in W is again in W. Note that /¥ contains all linear combinations of its &




EXAMPLE 1
SOLUTION

EXAMPLE 2

SOLUTION

o5

1.6 HOMOGENEQUS SYSTEMS, SUBSPACES, AND BASES 89

vectors if and only if it contains every sum of two of its vectors and
every scalar multiple of each of its vectors. We now give a formal definition
of a subset of R" having such a self-contained algebraic structure. Rather
than phrase the definition in terms of linear combinations, we state it in
terms of the two basic vector operations, vector addition and scalar multi-
plication.

DEFINITION 1.16 Closure and Subspace

A subset W of R" is closed under vector addition if for allu, v € W the
sumu+ visin W.If rv € Wfor all vE W and all scalars r, then W' is
closed under scalar multiplication. A nonempty subset ¥ of R” that is
closed under both vector addition and scalar multiplication is a
subspace of R".

Theorem 1.13 shows that the solution set of every homogeneous system
with n unknowns is a subspace of R". We give an example of a subset of R? that
is a subspace and an example of a subset that is not a subspace.

Show that W = {[x, 2x] | x € R} is a subspace of R2

Of course, W is a nonempty subset of R% Let u, v € W so that u = [a, 2a] and
v =[b, 2b]. Thenu + v = [q, 24] + [b, 2b] = [a + b, 2(a + D)] is again of the
form [x, 2x], and consequently is in W. This shows that W is closed under
vector addition. Because cu = c[a, 2a] = [ca, 2(ca)} is in W, we see that W is
also closed under scalar multiplication, so W is a subspace of R®. =

You might recognize the subspace W of Example 1 as a line passing
through the origin. However, not all lines in R? are subspaces. (See Exercises 11
and 14.)

Determine whether W = {{x, y] € R? | xy = 0} is a subspace of R%

Here W consists of the vectors in the first or third quadrants (including the
couidinate axes), as shown in Figure 1.35. As the figure illustrates, the sum of a
vector in the first quadrant and a vector in the third quadrant may be a vector
in the second quadrant, so W is not closed under vector addition, and is not a
subspace. For a numerical example, [1, 2] + [-2, —1] = [—1, 1], which is not
inW. =

Note that the set {0} consisting of just the zero vector in R" is a subspace of
R", because 0 + 0 = 0 and r0Q = 0 for all scalars . We refer to {0} as the zero
subspace. Of course, R” itself is a subspace of R", because it is closed under
vector addition and scaiar multiplication. The two subspaces {0} and R"
represent extremes in size for subspaces of R”. The next theorem shows one
way to form subspaces of various sizes.
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X2
A

+ —» X

FIGURC 1.35
The shaded subset is not closed under addition.

THEOREM 1.14 Subspace Property of a Span

Let W= sp(w,, w,, . .., w)be the span of k> 0 vectors in R". Then W
is a subspace of R,

PROOF Let
u=rw +rw,+ - +rwoand vy=S5w 5w+ o0+ osw,
be two elements of W. Their sum is
utv=(rFsgw (i Fs)we o+ (e osgw,

whichi is again a linear combination of w, w., . . . ,w, sou +visin W Thus W
is closed under vector addition. Similarly, for any scalar c,

cu = (er)w, + (er)w, + 00+ (erdwy

i394

is again in W—that is, W is closed under scalar multiplication. Because k > 0,
W is also nonempty, so W is a subspace of R*. 4

We say that the vectors w, w., ..., w, span or generate the subspace
sp(w,. wy, ... . w,) of R, _

We will see in Section 2.1 that every subspace in R” can be described as the
span of at most n vectors in R". In particular, the solution set of a homoge-

neous system .4x = 0 can always be described as a span of some of the solution 3

vectors. We tllustrate how to describe the solution set this way in an example.
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EXAMPLE 3 Express the solution set of the hornogeneous system
Y= 2n+ v - oy, =0
25, = 3x, +4x, - 3x, =0
3, =50 + 5N~ 4y, =0
-t % -3+ 2y, =0
as a span of solution vectors.

SOLUTION We reduce the augmented matrix [4 | 0] to transform the coefficient matrix 4
of the given system intc reduced row-echelon form. We have

1 -2 1 -170] [1-2 1-1]0 [t 0 5-3]0
2-3 4-3]0/ |0 1t 2-1]0 J0o 1 2-1]0
3-5 5 -4 (HN 0 1 2-110"l0 0 0o o0fc
-t 1-3 200 lo-1-2 tlo o 0 0 0fo)

The reduction is complete. Notice that we didn’t really need to insert the
column vector 0 in the augmented matrix, because it never changes.

From the reduced matrix, we find that thc homogeneous system has two
free variables and has a solution set described by the general solution vecior

x| [=5r+ 3s] =51 [5]

X -2r+ § -2 il o
X = = . =F =g .

X3J F I li ‘0

X, 3 t 0 L

Thus the solution set is

(—5 (3

-2 |1

Sp 110l
0l [1

We chose these two generating vectors from Eq. (1) by taking r = 1,5 = 0 for
the first and r = 0, s = | for the second. =

{ The preceding example indicates how we can always express the entire

: solution set of a homogeneous system with & free variables as the span of &
solution vectors.

Given an m X n matrix A4, there are three natural subspaces of R” or R”

associated with it. Recall (Theorem 1.14) that a span of vectors in R” is always

a subspace of R". The span of the row vectors of A4 is the row space of 4, and is

of course a subspace of R". The span of the column vectors of 4 is the column

space of 4 and is a subspace of R™. The solution set of Ax = 0, which we have

been discussing, is the nullspace of A and is a subspace of R". For example, if

_[1 0o 3
A_{O 1 —J’
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we see that

the row space of 4 is sp([1, 0, 3], [0, 1, —1]) in R?,

the column space of 4 is sp l m, [ ?D in R, and

4 L

the nullspace of 4 is sp in R,

The nulispace of A was readily found because A4 is in reduced row-echelon
form.

In Section 1.3, we emphasized that for an m X n matrix 4 and x € R", the
vector Ax is a linear combination of the column vectors of A. In Section 1.4 we
saw that the system Ax = b has a solution if and only if b is equal to some linear
combination of the column vectors of 4. We rephrase this criterion for

L 1}

existence of a solution of Ax = b in terms of the column space of 4.

Column Space Criterion

A linear system Ax = b has a solution if and only if b is in the
column space of A.

We have discussed the significance of the nullspace and the column space
of a matrix. The row space of A is significant because the row vectors of A4 are
orthogonal to the vectors in the nullspace of A, as the ith equation in the
systtm Ax = 0 shows. This observation will be useful when we compute
projections in Section 6.1.

Bases

We have seen how the solution set of a homogeneous linear system can be
expressed as the span of certain selected solution vectors. Look again at
Eq. (1), which shows the solution set of the linear system in Example 3 to be
sp(w,, w,) for

-5 3]
- 1

w, = ¢| and w,= [OJ
0 |

The last two components of these vectors are 1, 0 for w, and 0, 1 for w,. These
components mirror the vectors i = [1, 0] and j = {0, 1] in the plane. Now the
vector [r, s] in the plane can be expressed uniquely as a linear combination of i
and j—namely, as ri + sj. Thus we see that every solution vector in Eq. (1) of
the linear system in Example 3 is a unigue linear combination of w, and
w,—namely, rw, + sw,. We can think of (r, 5) as being coordinates of the
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solution relative to w, and w,. Because we regard all ordered pairs of numbe-
as filling a plane, this indicates how we might regard the solution set of th:
system as a plane in R*. We can think of {w,, w,} as a set of reference vectors rc:
the plane. We have depicted this plane in Figure 1.36

\ s L/-

More generally, if every vector w in the subspace W = sp(w,, Wy, . . . . %)
of R" can be expressed as a linear combination w = ¢,w, 4-c,w, + = -+ + W
in a unique way, then we can consider the ordered k-tuple (c;, ¢y, - - . , ¢) in =°
to be the coordinates of w. The set {w,, w,, . . . , w.} is considered to be a sei of

reference vectors for the subspace W. Such a set is known as a basis for . as
the next definition indicates.

DEFINITION 1.17 Basis for a Subspace

Let W be a subspace of R”. A subset {w,, W,, . . . , w,J of Wis a basis for
W if every vector in W can be expressed uniguely as a linear
combination of w,, W,, . .., W,.

Our discussion following Example 3 shows that the two vectors

-5 3
-2 1
W, = 1 and W, = 0

0 i

form a basis for the solution space of the homogeneous system there.

It {w, w,, ..., wtisabasis for 77/, then we have W=sp{w,,w,, ..., ®)2a
well as the umqueness requirement. Remember that we called e, ¢,, . . . . e,
standard basis vectors for R". The reason for this is that every element of R" can
be expressed uniquely as a linear combination of these vectors e. We call
{e,, e, ..., e,} the standard basis for R".

h

W, /
/
> >
0 W, TW;
FIGURE 1.36

The plane sp(w,, w,)
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We would like to be able to determine whether {w,, w,, . . ., w,} is a basis
for the subspace W = sp(w,, w,, ..., w,) of R"—that is, whether the
uniqueness criterion holds. The next theorem will be helpful. It shows that we
neec only examine uniqueness at the zero vector.

THEOREM 1.15 Unique Linear Combinations

The set {w,, w,, . .., w,} is a basis for W = sp(w, w,, . . ., w) ip R*if
and only if the zero vector is a unique linear combination of the
w,—that is, if and only if nw, + r,w, + - -+ + r,w, = 0 impiies that
n=n= - =r=0

PROOF If {w, w,,..., w}is a basis for W, then the expression for every
vector in ¥ as a linear combination of the w; is unique, so, in particular, the
linear combination that gives the zero vector must be unique. Because
Ow, + 0w, + -+ - + 0w, =0,it follows that rw, + rnw, + + -+ +rw, =0
implies that each r; must be 0.

Conversely, suppose that Ow, + Ow, + - -+ + Ow, is the only linear

combination giving the zero vector. If we have two linear combinations

W= (W, oW, + s+ gw,
w=dw +dw, + - +dw,

for a vector w € W, then, subtracting these two equations, we obtain
0=(c—dw +(c,=dw, + -+ + (¢ = dw,
From the unique linear combination giving the zero vector, we see that
o—-d=¢-d= "+ =¢—-d=0,

andsoc¢,=d;fori=1,2, ...,k showing that the linear combination giving w
is unique. A

The Unique Solution Case for Ax = b

The preceding theorcm immediately focuses our attention on determining
when a linear system Ax = b has a unique solution. Our boxed column space
criterion asserts that the system Ax = b has at least one solution precisely when
b is in the column space of 4. By Definition 1.17, the system has exactly one
solution for each b in the column space of 4 if and only if the column vectors of
A form a basis for this column space.

Let 4 be a square n x n matrix. Then each column vector b in R" is a
unique linear combination of the column vectors of 4 if and only if Ax = b has
a unique solution for each b € R". By Theorem 1.12. this is equivalent to 4
being row-reducible to the identity matrix, so that 4 is invertible. We have now
established another equivalent condition to add to those in Theorem 1.12. We
summarize the main ones in a new theorem for easy reference.
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THEOREM 1.16 The Square Case, m = =

Let A be an n X i matrix. The following are equivalent.

I. The linear system Ix = b has a unique solution for each b € K

o

The matrix A is row equivalent to the identity matrix /.

(9%)

The matrix A4 is invertible.

o

The column vectors of .4 form a basis jor R*.

In describing examples and stating exercises, we often write vectors in R”
as row vectors to save space. However, the vector b = Ax in Theorem 1.16 is
necessarily a column vector. Thus, solutions to examples and exercises that use
results such as Theorem .16 are done using column-vector notation, as our
next example illustrates.

Determine whether the vectorsv, = [, 1. 3], v, =[3,0,4],and v, = [I, 4, —1]
form a basis for R’

We must see whether the matrix 4 having v,, v,, and v, as column vectors is row
equivalent to the identity matrix. We need only create zeros below pivots to
determine if this is the case. We obtain

q

[1 3 1 13 1‘1 b3
A=l 0 4{~|0 =3 3/~|0 | -1
3 4—1J 0-5-4, [0 0-9

There is no point in going further. We see that we will be able to get the identity
matrix, so {v,. v.. v;} is a basis for R*. =

A linear systern having the same number 1 of equations as unknowns is
calied a square system, because the coefficient matrix is a square 7 X n matrix.
When a square matrix is reduced to echelon form, the result is a sjuare matrix
having only zero entries below the main diagonal. which runs from ihe upper
left-hand corner to the lower right-hand corner. This follows at once from the
fact that the pivot in a nonzero row~say, the ith row—is always in a column j,
where j = i. Such a square matrix U with zero entries below the main diagonal
is called upper triangular. The final matrix displayed in Example 4 is upper
triangular.

For a general linear system Ax = b of m equations in # unknowns, we
consult Theorem 1.7. It tells us that a consistent system .4x = b has a unique
solution if and only if a row-echelon torm H of 4 has a pivot in each of its »
columns. Because no two pivots appear in the same row of H, we see that H has
at least as many rows as columns; that is, m = n. Consequently, the reduced
row-echelon form for A must consist of the identity matrix, followed by m — n
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zero rows. For example, if m = 5 and 7 = 3, the reduced row-echelon form for i
A in this unique solution case must be

it
0
0

|
I
0 0 oJ

We summarize these observations as a theorem.

o O O
O — OO

THEOREM 1.17 The General Unique Solution Case

Let A be an m X n matrix. The followiug are equivalent.

1. Each consistent system Ax = b has a unique solution.

2. The reduced row-echelon form of A consists of the n X n identity
matrix followed by m — n rows of zeros.

3. The column vectors of A form a basis for the column space of 4.

Determine whether the vectors w, = [1, 2, 3, =1}, w, = [—2, =3, =5, 1], and
w; = [~1, =3, ~4, 2] form a basis for the subspace sp(w,, w,, #;) in R*.

By Theorem 1.17, we need to determine whether the reduced row-echelon
form of the matrix A with w,, w,, and w; as column vectors consists of the 3 X 3
identity matrix followed by a row of zeros. Again, we can determine this using
just the row-echelon form, without creating zeres above the pivots. We obtain

1 =2 1] [1 -2 -1] [1 =2 -1
2-3-3] Jo 1 -1] |0 1 -1

A=13_5 4|~lo 1 -1{"]0 0 o
-1 1 2/ lo-1 1] 0o 0 0

We cannot obtain the 3 X 3 identity matrix. Thus the vectors do not form a
basis for the subspace which 1s the column space of 4. ®

A linear system having an infinite number of solutions is called under- .
determined. We now prove a corollary of the preceding theorem: that
a consistent system is underdetermined if it has fewer equations than un-
knowns.

COROLLARY 1 Fewer Equations than Unknowns, m < n

If a linear system Ax = b is consistent and has fewer equations than
unknowns, then it has an infinite number of solutions.
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PROOF If m < nin Theorem 1.17, the reduced row-echelon form of 4 cannot
contain the # X nidentity matrix, so we cannot be in the unique solution case.
Because we are assuming that the system is consistent, there are an infinite
number of solutions. 4

The next corollary follows at once from Corollary 1 and Theorem 1.17.

COROLLARY 2 The Homogeneous Case

1. A homogeneous linear system Ax = 0 having fewer equations than
unknowns has a nontrivial solution—that is, a solution other than
the zero vector.

2. A square homogencous system Ax = § has a nontrivial solution if
and only if 4 is not row equivalent to the identity matrix of the
same size.

Show that a basis for R* cannot contain more than # vectors.

If {v,, v», ..., v} i5 a basis for R", then, by Theorem 1.15, the only linear
combmatlon of the v; equal to the zero vector is the one for which the
coefficient of each v; is the scalar 0. In terms of a matrix equation. ihe
homogeneous linear system Ax = 0, where v; is the jth column vector of the
n X k matrix 4, must have only the trivial s')lution. If k > n, then this linear
system has fewer equations than unknowns, and therefore 2 nontrivial
solution by Corollary 2. Consequently, we must have k < n. =

The Solution Set of Ax = b

Theorem 1.13 tells us the structure of the solution set of 2 homogeneous linear
system, To conclude the section, we now describe the solution set of 4x = b in
terms of the solution set of the corresponding homogeneous system Ax = 0. 1t is
customary to refer to an equation that describes the whole solution set as the
general solution, and to refer to each element of the solution set as a particular
solution.

THEOREM 1.18 Structure of the Solution Set of Ax = b

Let Ax = b be a linear system. If p is any particular solution of Ax = b
and h is a solution of the corresponding homogeneous system Ax = 0,
then p + h is a solution of Ax = b. Moreover, every solution of Ax = b
has this form p + h, so that the general solution is x = p + h where
Ah = 0.

PROOF Let p be a solution of Ax = b, so that Ap = b, and let k be a sotution of
Ax = 0, so that Ah = 0. Then

Ap+h)=Ap+ Ah=Db +0 =b,
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and so p + his indeed a solution. Moreover, if q is any solution of Ax = b, then
Ag-p=Aq—-Ap=b-b=0,

andsoq — pisasolution hof4x = 0. From q — p = h, it follows that g = p + h.
This compietes the proof. A

Students who have studied differential equations may be familiar with a
similar theorem describing the general solution of a linear differential equa-
tion.

Illustrate Theorem 1.18 for the linear system Ax = b given by

=2+ 3- x,= 4
2x, = 3x, + dxy - 3x, = ~1
3x, = 5%, + 5x, - dx, = 3
=X+ X, —3x;+ 2x,= 5.

We reduce the augmented matrix [4 | b] o transform the coefficient matrix 4
of the given system into reduced row-echelon form. (The coefficient matrix 4 is
the same as in Example 3.) We have

1 -2 1 -1 4 1 -2 1 -1 4 105 -3| -14
2 -3 4 -3|-1 0 1t 2-1/-9 012 -1 -9
3 -5 5 -4 3710 1 2 -1 -9/7]000 O I
-1 1 -3 2 5 0-1-2 1 9 000 O 0

Writing the general solution in the usual form and then as described in

1

Theorem 1.18, we have

X —14 = 5r+3s| [—14] [=5r+ 33]

X -9-2r+ s -9 -2r+ s
X = X, = - = 0 + ¥ .
X, s 0 s ] s
General solution p h

| SUMMARY |
L]

A linear system Ax = b is homogeneous if b = 0.

2. Every linear combination of solutioris of a homogeneous system Ax = 0 is
again a solution of the svstem.

3. Asubset Wof R"is closed under vector addition if the sum of two vectors
in M is again in W. The subset W' 1s closed under scalar multiplication if
every scalar multiple of every vector in B is in W. If W is nonempty and
closed under both operations, then W' is a subspace of R".
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4. The span of any k vectors in R” is a subspace of R". If 4 1San M X n
matrix, the row space of A is the span in R" of the row vectors of A, the
column space of A is the span in R of the column vectors, and the
nullspace of A is the solution set of Ax = 0 in R".

5. Asubset {w, w,, ..., w}ofasubspace W of R is a basis for W if every

“vector in W can be expressed uniquely as a linear compination of
W, Wy, ..., W

6. The set {w,, w,, ..., w,} is a basis for sp(w,, w,, . . ., w,) if and only if

Ow, + Ow, + - - - + Ow, is the unique linear combination of the w; that is-
equal to the zero vector.

7. A consistent linear System Ax = b of m equations in n unknowns has a
unique solution if and only if the reduced row-echelon form of 4 appears
as the n X n identity matrix followed by m — n rows of 7eros.

8. A consistent linear system having fewer equations than unknowns is
underdetermined—that is, it has an infinite number of solutions.
9. A square linear system has a unique solution if and only if its coefficient
matrix is row equivalent to the identity matrix.
10. The solutions of any consistent linear system Ax = b are precisely the
vectors p + h, where p is any one particular solution of A4x = b and h
varies through the solution set of the homogeneous system Ax = 0.

EXERCISES

In Exercises 1-10, determine whether the 12. Let g, b, and c¢ be scalars such that abc # 0.
indicated subset is a subspace of the given Prove that the plane ax + by + cz= 0 isa
Euclidean space R". subspace of R®.
13. a. Give a geometric description of all
L A{lr, -r]| r € R} in R? ‘ subspaces of R*. }
2 {x,x+ 1]| x € R} in R? b. Repeat part (a) for R’. ) '
3. {[n, m} | nand m are integers} in R? i4. Prove that every subspace of R" contains the
4. {[x, ]| x,y € R and x,y = 0} (the first zero veetor.
P UG A XY V= ! 15. Is the zero vector a basis for the subspace {0}

uadrant of RZ\
quadrant of R%) of R™? Why or why not?

5. {x,y,z]|xy;z€Rand z=3x + 2} in R
6. {[x, »,z] [ x,y,z ERand x = 2y + z} in R’ In Exercises 16-21, find a basis for the solution
7. {x, 5, 2z] | xp,zERand z = 1, y = 2x} in R? set-of the given homogeneous linear system.
8 {{2x,x+y, )]l xy ER}in R?
. 16 x— y=0
9. {2x, 3x,, 4x,, 5x,] | x; € R} in R*
2x -2y =

10. {[x;,x,...,x]|x €R x,=0}in R

11. Prove that the line y = mux is a subspace of _
R2 {HinT: Write the line as bx, + 26, + 2, = 0
W= {{x, mx] | x € RL] -9, - 3x, - 3x;=0
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X3+t x3- x,=0

Xy + X3 =0
X+ 2, - x;+ 3y =0

19. 2x, + x,+ x;+ x, =0
x -6t x =0
36, = 5x, + 2% + X, -0
Sx, —dx, + 3x;+ 2x, =0

20 2x, + i, x;+ x,; =0
3, tx - x5 +H2¢ =0
X, X 3y =0

Xy =X = Tx;+ 2y, =0

2L x; - x5t b ox;— X =0
3%, + 2%, - 3+ 20+ S =0
4, +2x, - x;+3x - x5 =0
3x, — 2x, + 14, + - 8x.=0
2%, — Xt 8xi+ 2x,—Tx; =0

In Exercises 22-30, determine whether the set of

vectors is a basis for the subspace of R" that tke
veclors span.

22, =1, 1], [L. 2]} in R?

23, {[—1,3,1],[2 1, 4]} in R

2. {~1.3,4],[1,5 —1].(1. 13,2} in R’

25. 4 [2 ~3],[4,0.2]. [2, ~ 1, 3]} in R?

26. {[2, 1,0, 2], [2. =3, 1. 0].{3,2,0,0}} in R

27. l"he set of row vectors of the matrix

2 -6 |
1 -3 4
28. The set of column vectors of the matrix in
Exercise 27.
29. The set of row vectors of the matrix

[1—1 01
0 1 2

2 1 -3

-

30. The set of column vectors of the matrix in
Exercise 29.

31. Find a basis for the nullspace of the matrix
2 3 1
[s 2 1
7 2y
6 -2 0]

32. Find a basis for the nullspace of the matrix

33. Letv.v, ....v,and w,, w,, ... w,be
vectors in a vector space V. Give a necessary
and sufficient condition, involving iinear
combinations. for

SP(Vys Vay - - ., Vi) = SP(W,, W, .. .. Ww,).

In Excrcises 34-37, solve the given linear system
and express the solution set in a form that
illustrates Theorem 1.18.

34, x, - 2x, t x;+ 5x, =7
35. 2%, — xy, + 3xy = -3
4x, + 2x, - x, = |
36. x, - 2x, +
2%, + X, = 3x3—
X, = Txy = 6x,+ 2y, =6

X+ x, =4
X, =6

37. 2x + xy + 3x;. = 3
Y= X t2a+ x,= 0

4x, ~ x+TIxy+ 2= 5

=X = 2% - X3t xg=-5

38. Mark each of the following True or False.
—_a. A linear system with fewer equations
than unknowns has an infinite number of
solutions.

___b. A consistent linear system with fewer
equations than unknowns has an infinite
number of solutions.

c. If a square linear system Ax = b has a
solution for every choice of column
vector b, then the solution is unique for
each b.

___d. Ifasquare system Ax = 0 has only the

trivial soltuion, then 4x = b has a unique 4

solution for every column vector b with
the appropriate number of components.
_e. If alinear system Ax = 0 has only the
trivial solution, then Ax = b has a unique
solution for every column vector b with
the appropriate number of components.
f. The sum of two solution vectors of any
linear system is also a solution vector of
ihe system.

|
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___g. The sum of two solution vectors of any 45. Letv, and v, be vectors in R". Prove the
homogeneous linear system is also a following set equalities by showing that each
solution vector of the system. of the spans is contained in the other.

___h. A scalar multiple of a solution vector of a. sp(v,, v,) = sp(v,, 2v, + V)
any homogeneous linear system is also a b. sp{v,, v} = sp(y, + v5, ¥, — Vo)

. 301‘-‘1‘0]‘} vef:‘to“{gzo-f the system. - 46. Referring to Exercise 45, prove that if {1, v,}

_ i Every line in R” is a subspace of R* - is a basis for sp(v,, v,), then
generated by a single vector. o a. {v,, 2v, + v,} is also a basis.

___ j- Every line through the origin in R? is a b. {V, + V;, v, — v,} is also a basis.

2 1 . .
suthpace of R? generated by a single ¢. {V, + ¥, ¥, — v, 2v, = 3} is not a basis.
vector. :

g 47. Let W, and W, be two subspaces of R".

39. We have defined a linear system to be Prove that their intersection W, N W, is also

underdetermined if it has an infinite number a subspace.
of solutions. Explain why this is a reasonable -
term to use for such a system. LEI In Exercises 48~51, use LINTEK or MATLAB to

determine whether the given vectors form a basis

40. A linear system is overdetermined if it has
for the subspace of R* that they span.

more equations than unknowns. Explain why
this is a reasonabie term to use for such a
SyStem. 48. a = [17 1: _13 O]

41. Referring to Exercises 39 and 40, give an 5 =05117]

example of an overdetermined Cay =532 1]
underdetermined linear system! a,=1[9,3,0,3]

42. Use Theorem !.13 to explain why a 49. b, =[3,-4,0,0, 1]
homogeneous system of linear equations has b, = [4, 0, 2, -6, 2]
either a unique solution or an infinite b, = [0, 1, 1, =3, 0]

number of solutions.

. b4:[1,4:_15310]
42, Use Theorem 1.18 {5 explain why no system B
of linear equations can have exactly two 50. vi=1[4,-1,2,1]
solutions. v, = [10, =2, 5, 1]

44. Let A be an m X n matrix such that the vy =[-9,1, -6, -3]

homogeneous system Ax = 0 has only the v, =[1, 1,0, 0}
trivial solution., 51. w, =[1,4, -8, 16]
a. Does it follow that every system Ax = b w,=[1,1,-1,1]
is consistent? B
b. Does it follow that every consistent W = [1, 4,8, 16]
system Ax = b has a unique solution? we=1[1,1,1,]]
MATLAB

Access MATLAB and enter fbcls6 if our text data files are available; otherwise, enter
the vectors in Exercises 48-51 by hand. Use MATLAB matrix commands to form the
necessary matrix and reduce it in problems M1-M4.

V1. Solve Exercise 48. V3. Solve Exercise 50.

M2. Solve Exercise 49. M4. Solve Exercise 51

i
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MS. What do you think the probability would be that if n vectors in R" were
selected at random, they would form a basis for R". (The probability of an
event is a number from 0 to 1. An impossible event has probability 0, a
certain event has probability 1, an event as likely to occur as not to occur has
probability 0.5, etc.)

M6. As a way of tustmg your answer to the preceding exercise, you might
experiment by asking MATLAB to generate “random” n X n matrices for
some value of #, and reducing them to sce if their column vectors form a
basis for R". Enter rand(8) to view an 8 X 8 matrix with “random” entries
between 0 and 1. The column vectors cannot be considered to be random
vectors in R?, because all their coraponents lie between 0 and 1. Do you think 3
the probability that such column vectors form a basis for R® is the same asin
the preceding exercise? As an experimental check, execute the command g
rref(rand(8)) ten times to row-reduce ten such 8 x 8 matrices, examining each
reduced matrix to see if the cofumn vectors of the matrix gencrated by E
rand(8) did form a basis for RS

M7. Note that 4xrand(8)—2+ones(8) will produce an 8 X 8 matrix with “random”
entries between —2 and 2. Again, its column vectors cannot be regarded as
random vectors ia RE, but at least the components of the vectors need not all
be positive, as they were in the preceding exercise. Do you think the
probability that such column vectors form a basis for R® is the same as in
Exercise M5? As an experimental check, row-reduce ten such matrices.

APPLICATION TO POPULATION DISTRIBUTION (OPTIONAL)

Linear algebra has proved to be a valuable tool for many practicai and
mathematical problems. In this section, we present an application to popula
tion distribution (Markov chains).

Consider situations in which people are split into two or more categories: 8
For example, we might split the citizens of the United States according 04
income into categories of E

poor,  middle income, rich.

We might split the inhabitants of North America into categories according {0
the climate in which they live:

hot, emperate,  cold.

In this book, we will speak of a population split into states. In the ' 
illustrations above, the populations and states are given by the following: 3

Population States

Citizens of the United States poor, middle income, rich
People in North America hot, temperate, cold
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Our populations will often consist of people, but this is not essential. For
example, at any moment we can classify the population of cars as operational
or not operational.

We are interested in how the distribution of a population between (or
among) states may change over a period of tinue. Matrices and their multiplica-
tion can play an important role in such considerations.

Transition Matrices

The tendency of a population to move among n states can sometimes be
described using an n X n matrix. Consider a population distributed among n =
3 states, which we call state 1, state 2, and state 3. Suppose that we know the
proportion-; of the population of state j that moves to state i over a given fixed
time period. Notice that the direction of movement from state j to state i is
the right-to-left order of the subscripts in ;. The matrix T = [f;] is called
a tramsition matrix. (Do not confuse our use of T as a transition matrix in
this one section with our use of T as a linear transformation elsewhere in the
text.)

Let the population of a country be classified according to income as
State 1: poor,
State 2: middle income,
State 3: rich.

Suppose that, over each 20-year period (about one gencration), we have the
following data for people and their offspring:

Of the poor people, 19% become middle income and 1% rich.
Of the middle income people, 15% become poor and 10% rich.

Of the rich people, 5% become poor and 30% middle income.

* Give the transition matrix describing these data.

25 1

The entry ¢; in the transitior matrix T represents the proportion of the
population moving from state j o state i, not the percentage. Thus, because
19% of the poor (state 1) will become middle income {state 2), we should take.
1, = .19. Similarly, because 1% of the people in state 1 move to state 3 (rich),
we should take #;, = .01. Now ¢, represents the proportion of the poor people
who remain poor at the end of 20 years. Because this is 80%, we should take ¢,
= _80. Continuing in this fashion, starting in state 2 and then in state 3, we
obtain the matrix

poor mid rich

i .80 .15 .05] poor
19 .75 30| mid

.65} rich

—
(]
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We have labeled the columns and rows with the names of the states. Notice
that an entry of the matrix gives the proportion of the population in the state
above the entry that moves to the state at the right of the entry during one
20-year period. =

In Example 1, the sum of the entries in each column of T'is 1, because the
sum reflects the movement of the entire population for the state listed at the
top of the column. Now suppose that the proportions of the entire population
in Example 1 that fall into the various states at the start of a time period are
given in the column. vector

P

=]
[
3

For example, we would have

=1
i
L3 [ 0 [ 2 | e

if the whole population were initially equally divided among the states. The
entries in such a population distribution vector p must be nonnegative and must
have a sum equal to 1.

Let us find the proportion of the entire population that is in state 1 after
one time period of 20 years, knowing that initially the proportion in state 1is
D, The proportion of the state-1 population that remains in state ! is ¢,,. This
gives a contribution of ¢, p, to the proportion of the entire population that will
be found in state | at the end of 20 years. Of course, we also get contributions
to state 1 at the end of 20 years from states 2 and 3. These two states contribute ‘3§
proportions ?,p, and £,3p, of the entire population to state 1. Thus, after 20 3§
years, the proportion in state 1 is

b+ laby T LD
This is precisely the first entry in the column vector given by the product
('Zn Ly 4 pl—l
To =ty ty ty||po|-
Ltsx by Iy PsJ
In a similar fashion, we find that the second and third components of Tp give
the proportions of population in state 2 and in state 3 after one time period. 3

For an mitial population distribution vector p and transition matrix
T the product vector Tp is the population distribution vector after
one¢ time period.
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Markov Chains

In Example 1, we found the transition matrix governing the flow of a
population among three states over a period of 20 years. Suppose that the same
transition matrix is valid over the next 20-year period, and for the next 20
years after that, and so on. That is, suppose that there is a sequence or chain of
20-year periods over which the transition matrix is valid. Such a situation is
called 2 Markov chain. Let us give a formal definition of a transition matrix for
a Markov chain.

DEFINITION 1.18 Transition Matrix
Ann'x nmatnles the transition matrix for an #-state Markov chain

- if all entries‘in 7'dre nonnegative and the sum of the entries in each
* column of. T'is 1. -

Markov chains arise naturally in biology, psychology, economics, and
many other sciences. Thus they are an important application of linear algebra
and of probability. The entry ¢; in a transition matrix 7 is known as the
probability of moving from state j to state i over one time period.

Show that the matrix
001
T=(100
010

is a transition matrix for a three-state Markov chain, and explain the
significance of the zeros and the ones.

The entries are all nonnegative, and the sum of the entries in each column is 1.
Thus the matrix is a transition matrix for a Markov chain.

At least for finite populations, a transition probability #; = 0 means that
there is no movement from state j to state i over the time period. That is, -

HISTORICAL NOTE Markov CHaINs are named for the Russian mathematician Andrei
Andreevich Markov (1856~1922), who first defined them in a paper of 1906 dealing with the Law
of Large Numbers and subsequently proved many of the standard results about them. His interest
in these sequences stemmed from the needs of probabiliiy theory;, Markov never dealt with their
applications to the sciences. The only real examples he used were from literary texts, where the
two possible states were vowels and consonants. To illustrate his results, he did a statistical study
of the alternation of vowels and consonants in Pushkin’s Eugene Onegin.

Andrei Markov taught at St. Petersburg University from 1880 to 1905, when he retired to
make room for younger mathematicians. Besides his work in probability, he contributed to such
fields as number theory, continued fractions, and approximation theory. He was an active
participant in the liberal movement in the pre- World War I era in Russia; on many occasions he
made public criticisms of the actions of state authoritics. In 1913, when as a member of the
Academy of Sciences he was asked to participate in the pompous ceremonies celebrating the 300th
anniversary of the Romanov dynasty, he instead organized a ceiebraticn of the 200th anniversary
of Jacob Bernoulli’s publication of the Law of Large Numbers.
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transition from state j to state i over the time period is impossible. On the
other hand, if z; = 1, the entire population of state j moves to state i over the
time period. That is, transition from state j to state i in the time period is
certain.

For the given matrix, we see that, over one time period, the entire
population of state 1 moves to state 2, the eutire population of state 2 moves to
state 3, and the entire popuiation of state 3 moves to state 1. =

If Tisan n X ntransition matrix and p is a population distribution column
vector with n compouents, then we can readily see that Tp is again a
population distribution vector. We illustrate the general argument with the
case n = 2, avoiding summation notation and saving space. We have

Tp = Iy ZIZ] {1] — [tllpl + 1Dy

) fn L f n
L"ZI "ZZJ LF2J L"Zlf'/l Ving2

To show that the sum of the components of 7p is 1, we simply rearrange the
sum of the four products involved so that the terms involving p, appear first,
followed by the terms involving p,. We obtain

W+ b+ D+ ypy = D (Gt b)) Pty L)
=p()+p()=p +p =1

The proof for the #n X n case is identical; we would have n? products rather than
four. Note that it follows that if T'is a transition matrix, then so is 7% we need
only observe that the jth column ¢ of T is itself a population distribution
vector, so the jth column of 72, which is T¢, has a component sum equal to 1.

Let T be the transition matrix over a time period—say, 20 years—in a
Markov chain. We can form a new Markov chain by looking at the flow of the
population over a time period twice as long—that is, over 40 years. Let us see
the relationship of the transition matrix for the 40-year time period to the one
for the 20-year time period. We might guess that the transition matrix for 40
years is 72 This is indeed the case. First, note that the jth column vector of an
n X nmatrix A is Ae, where ¢; is the jth standard basis vector of R", regarded as
a column vector. Now ¢, is a population distribution vector, so the jth column
of the two-period transition matrix is 7(7e) = T, showing that 77 is indeed
the two-period matrix.

If we extend the argument above, we find that the three-period transition
matrix for the Markov chain is 7°, and so on. This exhibits another situation 3
in which matrix multiplication is useful. Although raising even a small matrix
to a power using pencil and paper is tedious, a computer can do it easily.
LINTEK and MATLAB can be used to compute a power of a matrix.

m-Period Transition Matrix

A Markov chain with transition matrix 7 has 7™ as its m-period
transition matrix.
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For the transition matrix

T =

DO —= O
~0 O
OO -

(01 9]

in Example 2, show that, after three time periods, the distribution of
population among the three states is the same as the initial population
distribution. -

After three time periods, the population distribution vector is T3p, and we
easily compute that 7° = I, the 3 X 3 identity matrix. Thus 7%p = p, as
asserted. Alternatively, we could note that the entire population of state 1
moves te state 2 in the first time period, then to state 3 in the next time period, -
and finally back to state 1 in the third time period. Similarly, the populations
of the other two states move around and then back to the beginning state over

the three periods. =

Regular Markov Chains

We now turn to Markov chains where there exists some fixed number m of
time periods in which it is possible to get from any state to any other state. This
means that the mth power 7™ of the transition matrix has no zero entries.

DEFINITION 1.1 9 Regular Transmon Matrix, Regular Chain

- A transition matnx Tiis. regular if T’" has no zero entries for some
integer m. A Markov hain having a regular transition matrix is called
‘a regular chain.: L RN ’

Show that the transition matrix

of Example 2 is not regular.

A computation shows that 77 still has zero entries. We saw in Example 3 that
T3 = ], the 3 x 3 identity matrix, sowe musthave T =T, T° = T2, T* = T° =
I, and the powers of T repeat in this fashion. We never eliminate all the zeros.
Thus 7 is not a regular transition matrix. =

If 7™ has no zero entries, then 77*! = (T™)T has no zero entries, because
the entries in any column vector of T are nonnegative with at least one nonzero
entry. In determining whether a transition matrix is regular, it is not necessary
to compute the entries in powers of the matrix. We need only determine
whether or not they are zero.
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If X denotes a nonzero entry, determine whether a transition matrix T with
the zero and nonzero configuration given by

0 0
0 0
0 X
X 0

~3

ti
_chX
oo X X

is regular.

We compute configurations of high powers of T as rapidly as we can, because . |
once a power has no zero entries, all higher powers must have nonzero entries.
We find that

{xOx xxxx} [xxxxw
2_X00 4_)(0)(_,)( s_xyyx
T"‘xxx0J> T"xxxxJ> T*[xxxx}’

[0 0 x 0 X X X .0 X X X X

so the matrix T is indeed regular. =

It can be shown that, if a Markov chain is regular, the distribution of
population among the states over many time periods approaches a fixed ¥
steady-state distribution vector s. That is, the distribution of population among
the states no longer changes significantly as time progresses. This is not to say s
that there is no longer movement of population between states; the transition 7%
matrix T continues to effect changes. But the movement of population out of
any state over one time period is balanced by the population moving into that
state, so the proportion of the total population in that state remains constant.
This is a consequence of the following theorem, whose proof is beyond the
scope of this book.

THEOREM 1.19 Achievement of Steady State

Let T be a regular transition matrix. There exists a unique column
vector s with strictly positive entries whose sum is 1 such that the
followmg hold ~

1. As m.becomes larger and larger ali columns of 7™ approach the
column vector s.. :

2. Ts = s, and s is the umque column vector with this property and
whose components add up to 1.

From Theorem .19 we can show that, if p is any -initial population -3
distribution vector for a regular Markov chain with transition matrix 7, the 23
population distribution vector after many time periods approaches the vector S
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s described in the theorem. Such a vector is called a steady-state distribution
vector. We indicate the argument using a 3 x 3 matrix 7. We know that the
population distribution vector after » time periods is 7™p. If we let

D 5
p=|p,| and s =5,
14 S3

then Theorem 1.19 tells us that 7™p is approximately

Sy 8y S|l St SDy toSips
S S S| =D T Syt SiDs)-
53 83 S3||Ps| Sy T syt Sips

Because p, + p, + p; = 1, this vector becomes

Thus, after many time periods, the population distribution vector is approxi-
mately equal to the steady-state vector s for any choice of initial population
distribution vector p.

There are two ways we can attempt to compute the sieady-state vector s of
a regular transition matrix 7. If we have a computer handy, we can simply
raise 7T to a sufficiently high power so that all column vectors are the same, as
far as the computer can print them. The software LINTEK or MATLAB can be
used to do this. Alternatively, we can use part (2) of Theorem 1.19 and solve
for s in the equation

Ts =s. 1

In solving Eq. (1), we will be finding our first eigenvector in this text. We will
have a lot more to say about eigenvectors in Chapter 5.
Using the identity matrix 1, we can rewrite Eq. {1) as

Ts = Is
ITs —Is=10 3
(T—-Ds=0.

The last equation represents a homogeneous system of linear equations with
coefficient matrix (T ~ I') and column vector s of unknowns. From all the
solutions of this homogeneous system, choose the solution vector with positive
entries that add up to 1. Theorem 1.19 assures us that this solution exists and
is unique. Of course, the homogeneous system can be solved easily using a
computer. Either LINTEK or MATLAB will reduce the augmented matrix to a
form from which the solutions can be determined casily. We illustrate both
methods with examples.
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Use the routine MATCOMP in LINTEK, and raise the transition matrix to
powers to find the steady-state distribution vector for the Markov chain in
Example 1, having states labeled

poor,  middle income,  rich.

Using MATCOMP and experimenting a bit with powers of the matrix 7 in
Example I, we find that

poor mid rich
3872054 3372054 .3872054| poor
T% ~|.4680135 4680135 .4680135|. mid
1447811 .1447811 .1447811] rich

Thus eventually about 38.7% of the population is poor, about 46.8% is middle
income, and avout 14.5% is rich, and these percentages no longer change as
time progresses further over 20-year periods. =

The inhabitants of a vegetarian-prone community agree on the following rules:

1. No one wil! eat meat two days in a row.
2. A person who eats no meat one day will flip a fair coin and eat meat on
the next day if and only if a head appears.

Determine whether this Markov-chain situation is regular; and if so, find the
steady-state distribution vector for the proportions of the population eating no
meat and eating meat.

The transition matrix 7 is

no meat meat

1}no meat

T= 0

1
[N ST

meat

Because T2 has no zero entries, the Markov chain is regular. We solve

l fs,] _[o0
-1 I.SL o
We reduce the augmented matrix:

EEE R

-1

(T-I)s=6, or [_

RO = b2 =

BN = b

Thus we have

fs [2r]
‘ ‘} = [ { for some scalar .
J
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But we must have 5, + 5, = |, s02r + r=land r = % Consequently, the
2

steady-state population distribution is given by the vector H We see that,
3

eventually, on each day about 3 2 of the peopie eat no meat and the other . eat

meat. This is independent of the initial distribution of population between

the states. All might eat meat the first day, or all might eat no meat; the

2
steady-state vector remains H in either case. =
3

If we were to solve Example 7 by reducing an augmented matrix with a
computer, we should add a new row corresponding to the condition s, + s, = |
for the desired steady-state vector. Then the unique sclution could be seen at
once from the reduction of the augmented matrix. This can be done using
pencil-and-paper computations just as well. If we insert this as the first
condition on s and rework Example 7, our work appears as follows:

111 1] [ro)?

_1 3 1 1

? 110]_]0 ;2: ? 101 HE

5 ~110 L0 -3 3 00|90
2
Again, we obtain the steady-state vector ? .
3

S ]
SUMMARY

1. A transition matrix for a Markov chain is a square matrix with nonneg-
ative entries such that the sum of the entries in each column is 1.

2. The entry in the ith row and jth column of a transition matrix is the
“proportion of the population in state j that moves to state i during one time
period of the chain.

3. Ifthe column vector p is the initial population distribution vector between
states in a Markov chain with transition matrix 7, the population
distribution vector after one time period of the chain is Tp.

4. If Tisthe transition matrix for one time period of a Markov chain, then 7™
is the transition matrix for m time periods.

5. A Markov chain and its associated transition matrix 7 are called regular if
there exists an integer m such that 7™ has no zero entries.

6. If T is a regular transition matrix for a Markov chain,

a. The columns of 7™ all approach the same probability distribution
vector s as m becomes large;

b. s is the unique probability distribution vector satisfying 7s = s; and
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¢. As the number of time periods increases, the population distribution
vectors approach s regardless of the initial population distribution
vector p. Thus s is the steady-state population distribution vector.

1 EXERCISES

In Exercises 1-8, deterinine whether the given
matrix is a transition matrix. If it s, determine
whether it is regular.

[0 l

2.

—
-1
[T

oy N

L |-
—_—
Alv B

1
pun U

2 1 3 12
304 5 —1 4.3 4
4 4 8 L6 4
(50 05 3205
s [5500 6 [4200
1055 0 1212
10055 240 2
(005 2 2.1 0.1 00.9
301 8.5 020 0.1
7.10 0 4 0 .1 81030 1 0
751 0.1 1.1 000
Lo 0.2 0.2 03100
37 4
In Exercises 912, let T ={.4 2 .1|be the
315

transition matrix for a Markov chain, and let p =

3
[.2} be the initial population distribution vector.
1.5

9. Find the proporticn of the state 2
population that is in state 3 after two time
periods.

10. Find the proportion of the state 3 -
population that is in state 2 after two time
periods.

11. Find the proportion of the total population
dhat s instate 3 after two ttme periods.

12. Find the population distribution vector after
tao time periodds,

—_

In Exercises 1318, determine whether the given

transition matrix with the indicated distribution

of zero entries and nonzero X entries is regular.

13.

15.

17.

(x X % 'XOX'\
0 x x 4. |0 0 X
0 x x| x x 0l
[0 x 0 [x 0 x
X X X X X X
L0 x 0 16‘><0><
[0 x x x X 0 x
X 0 X X [0 0 x
0 0 x x 18><00
LOOXX 10 x 0

000

In Excreises 19-24, find the steady-state
distribution vector jor the given transition matrix
of a Markov chain.

19.

no
[

23.

25.

2 3t
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1 2. |y
3 4 2
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103 022
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Mark each of the following True or False.

___a. All entries in a transition matrix arce

nannegaiive,

_—— b, Every matrix whose entries are all

nonnegative 18 2 ransition malrix.

XAI

XXX,XXX

x
(R,



c¢. The sum of all the entries inan n X n
transition matrix is 1.

d. The sum of all the entries inan n X n
transition matrix is 7.

e. If a transition matrix contains no zero
entries, it is regular.

f. If a transition matrix is regular, it

. contains no nonzero entries.

" ___g. Every power of a transition matrix is
again a transition matrix.

h. If a transition matrix is regular, its square
has equal column vectors.

i. If a trapsition matrix T is regular, there
exists a unique vector s such that Ts = s,

j. If a transition matrix T is regular, there
exists a unique population distribution
vector s such ihat 7s = s.

26. Estimate A'®, if 4 is the matrix in Exercise
20.

27. Estimate 4'®, if 4 is the matrix in Exercise
23.

Exercises 28-323 deal with the following Markov
chain. We classify the women in a country
according as to whether they live in an urban (U),
suburban (S), or rural (R) area. Suppose that each
woman has just one daughter, who in turn has
Jjust one daughter, and so on. Suppose further that
the following are true:

For urban women, 10% of the daughters settle
in rural areas, and 50% in suburban areas.

For suburban women, 20% of the daughters
% settle in rural areas, and 30% in urban areas.

For rural women, 20% of the daughters settle in
the suburbs, and 70% in rural areas.

3 Let this Markov chain have as its period the time
required to produce the next generation.

28. Give the transition matrix for this Markov
chain, taking states in the order U, S, R.

29. Find the proportion of urban women whose
granddaughters are suburban women.

30. Find the proportion of rural women whose
granddaughters are also rural women.
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31. If the initial population distribution vector
A4
for all the women is|.5|, find the popuiation
A
distribution vector for the next generation.
32. Repeat Exercise 31, but find the population
distribution vector for the following (third)
generation.

33. Show that this Markov chain is regular, and
find the steady-state probability distribution
vector.

Exercises 34-39 deal with a simple genetic model
involving just two types of genes, G and g.
Suppose that a physical trait, such as eye color, is
controlled by a pair of these genes, one inherited
from each parent. A person may be classified as
being in one of three states:

Dominant (type GG), Hybrid (type Gg),
Recessive (type gg).

We assume that the gene inherited from a parent
is a random choice from the parent’s two
genes—that is, the gene inherited is just as likely
to be one of the parent’s two genes as to be the
other. We form a Markov chain by starting with a
population and always crossing with hybrids to
produce offspring. We take the time required to
produce a subsequent generation as the time
period for the chain.

34. Give an intuitive argument in support of the
idea that the transition matrix for this
Markov chain is

(DHR
1 1
HE
R I T T S
£=15 7 3| H
1 1
03 3 R

35. What proportion of the third-generation
offspring (after two time periods) of the
recessive (gg) population is dominant (GG)?

36. What proportioz: of the third-generation
offspring (after two time periods) of the
hybrid (Gg) population is not hybrid?
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37. If initially the entire population is hybrid,
find the population distribution vector in the
aext generation.

38. If initially the population is evenly divided
among the three states, find the population
distribution vector in the third generation
(after two time periods).”

39. Show that this Markov chain is regular, and
find the steady-state population distribution
vector.

40. A state in a Markov chain is called absorbing
if it is impossible to leave that state over the
next iime period. What characterizes the
transition matrix of a Markov chain with an
absorbing state? Can a Markov chain with
an absorbing state be regular?

41. Consider the genetic model for Exercises
34-39. Suppose that, instead of always
crossing with hybrids to procuce offspring,
we always cross with recessives. Give the
transition matrix for this Markov chain, and
show that there is an absorbing state. (See
Exercise 40.)

42. A Markov chain is terined absorbing if it
contains at least one absorbing state (see
Exercise 40) and if it is possible to get from
any state to an absorbing state in some
number of time periods.

a. Give an example of a transition matrix
for a three-state absorbing Markov chain.

b. Give an example of a transition matrix
for a three-state Markov chain that is not
absorbing but has an absorbing state.

43, With reference to Exercise 42, consider an
absorbing Markov chain with transition
matrix T and a single absorbing state. Argue
that, for any initial distribution vector p, the

_vectors 7™p for large n approach the vector
containing 1 in the component that
corresponds to the absorbing state and zeros
elsewhere. [Succestion: Let m be such that
it is possible to reach the absorbing state
from any state in m time periods, and let ¢
be the smallest entry in the row of 7™
corresponding to the absorbing state. Form a
v chain with just two states, Absorbing
(A) and Free (F), which has as time period m
time periods of the original chain, and with
probability ¢ of moving from state F to state

VECTORS, MATRICES, AND LINEAR SYSTEMS

El In Exercises 50-54, find the steady-state

A in that time period. Argue that, by starting
in any state in the original chain, you are
more likely to reach an absorbing state in mr
time periods than you are by starting from
state F in the nev. chain and going for 7 time
periods. Using the fact that large powers of a
positive number less than 1 are almost 0,
show that for the two-state chain, the
population distribution vector approaches

(l)] as the number of time periods increases,

regardless of the initial populaticn
distribution vector.]

44, Let The an n X n transition matrix. Show
that, if every row and every column have
fewer than #/2 zero entries, the matrix is
regular.

In Exercises 45-49, find the steady-state
population distribution vector for the given
transition matrix. See the comment following
Example 7.

[0 1 1 i
4 2 4 5
45. |, 5 46. |, 3 47 (4 o
i .
L 4 2 4 5
(0 11 L3l
4 2 5 48
1 4 3
48.%05 49.;073
1 3 11
Lszo 042

population distribution vector by (a) raising the -
matrix to a power and (b) solving a linear system

Use LINTEK or #MATLAB.
[ (.3 .3..1
1.3 4 .
50.12 0 2 51.[.1 35
.7 .7 4 6 4 4
[102.5] ER: 09 (9)1
4 O ’) 5 _ .5 .4 O
2.0, o Al 53106300
2.5 4 0 ;
35 5 o 00720
T 0 0 0.8 .1

54. The matrix in Exercise 8
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APPLICATION TO BINARY LINEAR CCDES (OPTIONAL)

We are not concerned here with secret codes. Rather, we discuss the problem
of encoding information for transmission so that errors occurring during
transmission or reception have a good chance of being detected, and perhaps
even being corrected, by an appropriate decoding procedure. The diagram

message —> [encode! — [transmit| — [receive] — [decode] — message

shows the steps with which we are concerned. Errors could be caused at any
stage of the process by equipment malfunction, human error, lightning,
sunspots, cross tall_c interference, etc.

Numerical Representation cf Information

All information can be reduced to sequences of numbers. For example, we
could number the letiers of our alpkabet and represent every word in our
language as a finite sequence of numbers. We concentrate on how to encode
nurnbers to detect and possibly correct errors.

We are accustomed to expressing numbers in decimal (base 10) notaticn,
using as alphabet the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9%. However, they also can be
expressed using any integer basc greater than or equal to 2. A computer works
in binary (base 2) notation, which uses the smaller alphabet {0, 1}; the number
1 can be represented by the presence of an electric charge or by current
flowing, whereas the absence of a charge or current can represent 0. The
American National Standard Code for Informaticn Interchange (ASCII) has
256 characters and is widely used in personal computers. It includes all the
characters that we customarily find on typewriter keyboards, such as

AaBbZz1234567890,;7*&#!+—-/"".

The 256 characters are assigned numbers from 0 to 255. For example, S is
assigned the number 83 (decimal), which is 1010011 (binary) because, reading
1010011 from left to right, we see that

1025 + 0(2%) + 1(2%) + 0(2%) + 0(22) + 1(2') + 1(29) = 83.

The ASCII code number for the character 7 is 55 (decimal), which is 110111
(binary). Because 28 = 256, each character in the ASCII code can be
represented by a sequence of eight 0’s or 1’s; the S is represented by 01010011
and 7 by 00110111. This discussion makes it clear that all information can be
encoded using just the binary alphabet B = {0, 1}.

Message Words and Code Words

An algebraist refers to a sequence of characters from some alphabet, such as
(1010041 using the alphabet B or the sequence of letters g/yp! using our usual
letter alphabet, as 2 word; the computer scientist refers to this as a siring. As we
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discuss encoding words so that transmission errors can be detected, it is
convenient to use as small an alphabet as possible, so we restrict ourselves to
the binary words using the alphabet B = {0, 1}. Rather than give illustrations
using words of eight characters as in the ASC!I code, let us use words of just
four characters; the i6 possible words are

- 0000 0001 0010 001l 0100 0101 0110 0111
1000 1001 1010 1011 1100 110l 1110 1111

An error in transmitting a word occurs when a 1 is changed to a 0 or vice versa
during transmission. The first two illustrations exhibit an inefficient way and
an efficient way of detecting a transmission error in which only one erroneous
interchange of the characters 0 and 1 occurs. In each illustration, a binary
message word is encoded to form the code word tc be transmitied.

Suppose we wish to send 1011 as the binary message word. To detect any

single-error transmission, we could send each character twice—that is, we 4

could encode 1011 as 11001111 when we send it. If a single error is made in
transmission of the code word 11001111 and the recipient knows the encoding
scheme, then the error will be detected. For illustration, if the received code
word is 11001011, the recipient knows there is an error because the fifth and
sixth characters are different. Of course, the recipient does not know whether 0
or | is the correct character. But note that not all double-error transmissions
can be detected. For example, if the received code word is 11000011, the
recipient perceives no error, and obtains 1001 upon decoding, which was not 3

the message sent. n

One problem with encoding a word by repeating every character as in -4

Illustration 1 is that the code word is twice as long as the original message 38
word. There is a lot of redundancy. The next illustration shows how we can 3
more efficiently achieve the goal of warning the receiver whenever a single .33
error has been committed. 3

Suppose again that we wish to transmit a four-character word on the alphabet
B. Let us denote the word symbolically by x,x,x,x,, where each x; is either 0 or .
1. We make use of modulo 2 arithmetic on B, where

0+0=0, 1+0=0+1=1, and 1+ 1=0 (modulo 2 sums)

and where subtraction is the same as addition, sothat 0 — 1 =0 + 1 = 1. %

Multiplication is as usual: 1 - 0=0-1=0and 1 - | = 1. We append to the 3
word x,x,%;x, the modulo 2 sum

X

This amounts to appending the character 0 if the message word contains an
even number of characters 1, and appending a | if the number of s in the

=y, +x+ X+, (1) =
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word is odd. Note that the result is a five-character code word X,Xx,X;XXs
definitely containing an even number of 1°s. Thus we have

X +tx+x+x+x=0 (modulo?2).

If the message word is 1011, as in Illustration 1, then the encoded word is
10111. If a single error is made in transmitting this code word, changing a
single 0 to 1 or a single 1 to 0, then the modulo 2 sum of the five characters will
be-1 rather than 0, and the recipient will recognize that there has been an error
in transmitting the code word. =

[llustration 2 attained the goal of recognizing single-error transmaissions
with less redundancy than in Hlustration 1. In Illustration 2, we used just oné
extra character, whereas in Illustration 1 we uscd four extra characiers.
However, using the scheme in Illustration 1, we were able to identify which
character of the message was affected, whereas the technique in Illustration 2
showed only that at least one error had been made.

Computers use the scheme in Illustration 2 when storing the ASCII code
number of one of the 256 ASCII characters. An extra 0 or 1 is appended to the
binary form of the code number, so that the number of 1's in the augmented
word is even. When the encoded ASCII character is retrieved, the computer
checks that the number of 1’s is indeed even. If it is not, it can try to rcad that
binary word again. The user may be warned that there is a PARITY CHECK
problem if the computer is not successful.

Terminology

Equation 1 in Illustration 2 is known as a parity-check equation. In general,
starting with a message word x,x, * * - X, of k characters, we encode it as a code
word x,x, * + + x, * * * x, of n characters. The first k characters are the
information portion of the encoded word, and the final n — k characters are the
redundancy portion or parity-check portion.

We introduce more notation and terminology to make our discussion
easier. Let B” be the set of all binary words of # consecutive 0’s or 1’s. A binary
code Cis any subset of B”, We can identify a vector of n components with each
word in B"—namely, the vector whose ith component is the ith character in
the word. For example, we can identify the word 1101 with the row vector
[1, 1,0, I]. It is convenient to denote the set of all of these row vectors with 7
components by B" also. This notation is similar to the notation R* for all
n-component vectors of real numbers. On occasion, we may find it convenient
to use column vectors rather than row vectors.

The length of a word u in B” is #, the number of its components. The
Hamming weight wt(x) of u is the number of components that are 1. Given two
binary words % and v in B”, the distance between them, denoted by d(x, v), is the
number of components in which the entries in v and »'are different, so that one
of the words has a 0 where the other has a 1.
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0011101019 and 1010110001 as follows.
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Consider the binary words # = 11010011 and v= 01110111. Both words have -
length 8. Also, wt(u) = 5, whereas wt(v) = 6. The associated vectors differ in
the first, third, and sixth components, so d(u, v) = 3. =

We can define addition on the set B by adding modulo 2 the characters in
the corrésponding positions. Remembering that 1 + I = 0, we add

0011101010 B E
+ 1010110001
1001011011

We refer to this operation as word addition. Word subtraction is the same as
word addition. Exercise 17 shows that B” is closed under word addition. A §
binary group code is any nonempty subset C of B" that is closed under word
addition. It can be shown that C has precisely 2* elements for some integer &
where 0 < k = n. We refer to such a code as an {n, k) binary group code.

Encdding to Enable Correcting a Single-Error Transmission

We now show how, using meore than one parity-check equation, we can not

only detect but actually correct a single-error iransmission of a code word.

This method of encoding was developed by Richard Hamming in 1948.
Suppose we wish to encode the 16 message words

0000 0001 0010 0011 0100 010f 0110 011l
1000 1001 1010 1011 1100 t10f 1110 111i

in B* so that any single-error transmission of a code word not only can be;
detected but also corrected. The basic idea is simple. We append to the:
message word X x,x,x, some additional binary characters given by parity-
check equations such as the equation x; = x, + x, + x; + x, in Hlustration 2,;
and try to design the equations so that the minimum distance between the 16;
code words created will be at least 3. Now, with a single-error transmission of :
code word, the distance from the received word to that code word will be 1. I
we can make our code words all at least three units apart, the pretransmissi
code word will be the unique code word at distance 1 from the received wor
(If there were two such code words, the distance between them would be
most 2.)

" In order to detect the error in a single-error transmission of a code wor!
including not only message word characters but also the redundant parity
check characters, we need to have each component x; in the code word appeat
at least once in some parity-check equatlon Note that in Illustration 1, eacls
component Xx,, Xx,, X3, X;, and x, appears in the parity-check equation x; =g
X; + X, + x; + x,. The parity-check equations 3

X=X+ 6+, X=X +x+y, and v, =x +x +x, (U4
1 2 RE 5 ! 3 13 7 2 3 4 =4

which we will show accomplish our goal, also satisfy this condition.
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Let us see how to get a distance of at least 3 between each pair of the 16
code words. Of course, the distance between any two of the original 16
four-character message words is at least 1 because they are all different.
Suppose now that two message words u and v differ in just one component, say
X,. A single parily-check equation containing x, then yields a different
character for u than for v. This shows that if each x; in our original. message
word appears in at least two parity-check equations, then any message words
at a distance of 1 are encoded into code words of distance at least 3. Note that
the three parity-check equations [Egs. (2)] satisfy this condition. It remains to
ensure that two message words at a distance of 2 are encoded to increase this
distance by at least 1. Suppose two message words ¥ and v differ in only the ith
and jth components. Now a parity-check equation containing both x; and x;
will create the same parity-check character for # as for v. Thus, for each such
combinaticn i,j of positions in ovr message word, we need some panty-check
equation to contain either x; but not x; or x; but not x;, We see that this
condition is satisfied by the three parity-check equations [Eqgs. (2)] for all
possible combinations i,j—namely,

1,2 1,3 14 23 24 and 34.

Thus, these equations accomplish our goal. The 16 binary words of length 7,
obtained by encoding the 16 binary words

0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111

of length 4 using Egs. (2) form a subset of B’ called the Hamming (7, 4) code.
In Exercise 16, we ask you to show that the Hanuning {7, 4) code is a binary
group code.

We can encode each of the 16 binary words of length 4 to form the
Hamming (7, 4) code by multiplying the vector form [x,, x,, X;, x,] of the word
on the right by a 4 X 7 matrix G, called the standard generator matrix—
_ namely, we compute

1000110]
0100101
[ XX xll001 011 1
000 1011

s

To see this, note that the first four columns of G give the 4 X 4 identity matrix
I, so the first four entries in the encoded word will yield precisely the message
word x,x,%;X,. In columns 5, 6, and 7, we put the coeflicients of x;, x,, x;, and x,
as they appear in the parity-check equations defining x;, x;, and x,, respec-
tively. Table 1.1 shows the 16 message words and the code words obtained
using this generator matrix. G Note that the message words 0011 and 0111,
which are at distance 1, have been encoded as 0011100 and 0111001, which
are at distance 3. Also, the message words 0101 and 0011, which are at dis-
tance 2, have been encoded as 0101110 and 0011100, which are at distance 3.
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Decoding a received word w by selecting a code word at minimum
distance from w {in some codes, more than one code word might be at the
minimum distance) is known as nearest-neighbor decoding. If transmission
errors are independent from each other, it can be shown that this is equivalent
to what is known as maximum-likelihood decoding.

Suppose the Hamming (7, 4) code shown in Table 1.1 is used. If the received
word is 1011010, then the decoded message word consists of the first four
characters 1011, because 1011€10 is a code word. However, suppose the word
0110101 is received. This is not a code word. The closest code word is
0100101, which is at distance 1 from 0110101. Thus we decode 0110101 as

TABLE 1.1

The Hamming (7, 4) code

Message Code Word
0000 0000000
0001 0001011
0010 0010111
0011 0011100
0100 0100101
0101 0101110
0110 0110010
0111 0111001
1000 1000110
1001 1001101
1610 1010001
1011 1011010
1100 1100011
1101 1101000
1110 1110100

111 1111111

HISTORICAL NOTE RicHarD HammiNg fb. 1915) had bis interest in the question of coding
stimulated in 1947 when he was using an earlv Bell System relay computer on weekends only
(because he did not have priority use of the machine). During the week, the machine sounded an
alarm when it discovered an error so that an operator could attempt to correct it. On weekends,
however, the machine was unattended and would dump any problem in which it discovered an
error and proceed to the next one. Hamming’s frustration with this behavior of the machine grew
when errors cost him two consecutive weekends of work. He decided that if the machine could
discover errors—it used a fairly simple error-detecting code—there must be a way for it to correct
them and proceed with the solution. He therefore worked on this idea for the next year and
discovered several different methods of creating error-correcting codes. Because of patent
considerations, Hamming did not publish his solutions until 1950. A brief description of his (7, 4)
code, how.ver, appeared in a paper of Claude Shannon (b. 1916) in 1948.

Hamming, in fact, developed some of the parity-check ideas discusscd in the.text as well as
the geometric model in which the distance between code words is the number of coordinates in
which they differ. He also, in essence, realized that the set of actual code words embedded in B’
was a four-dimensional subspace of that space.
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0100, which differs from the first four characters of the received word. On the
other hand, if we receive the noncode word 1100111, v:2 decode it as 1100,
because the closest code word to 1100111 is 110001!. =

received as 0011001, with two errors, then the recipient knows that an error
has been made, because 0011001 is not a code word. However, nearest-
neighbor decoding yields the code word 0111001, which corresponds to a
message word 0111 rather than the intended 0001. When retransmission is
practical, it may be better to request it when an error is detected rather than
blindly using nearest-neighbor decoding.

Of course, if errors are generated independently and transmission is of
high quality, it should be much less likely for a word to be transmitted with
two errcrs than with une error. If the probabitity of an error in transniission of
a single character is p and errors are generated independently, then probability
theory shows that in transmitting a word of length »,

the probability of no error is {1 — p)",
the probability of exactly one error is np(1 — p)*!, and
the probability of exactly two errors is !‘1"2;'1172(1 - pyi

For example, if p = 0.0001 so that we can expect about one character out of
every 10,000 to be changed and if the length of the word is n = 10, then the
probabilities of no error, one error, and two errors, respectively, are approxi-
mately 0.999, 0.000999, and 0.0000004.

Parity-Check Matrix Decoding

You can imagine that if we encoded all of the 256 ASCII characters in an (#, 8)
linear code and used nearest-neighbor decoding, it would be a job to pore over
the list of 256 encoded characters to determine the nearest neighbor to a
received code word. There is an easier way, which we illustrate using the
Hamming (7, 4) code developed before Illustration 4. Recall that the parity-

check equations for that code are
Xs=X +x+tx, xx=xtx+x, and Xx;,=Xx, + x; + Xx,.

Let us again concern ourselves with detecting and correcting just single-error
transmissions. If these parity-check equations hold for the received word, then
no such single error has occurred. Suppose, on the other hand, that the first
two equations fail and the last one holds. The only character appearing in both
of the first two equations but not in the last is x;, so we could simply change the
character x, from 0 to 1, or vice versa, to decode. Note that each of x,, x,, and
X, is omitted just once but in different equations, x; is the only character that
appears in all three equations, and each of x;, x;, and x; appears just once but
in different equaitons. This aliows us to identify the character in a single-error
transmission casily.
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We can be even more systematic. Let us rewrite the equations as
xl+x2+x3+x5=0’ x|+X3+X4+x6=O, aﬁd
X, + Xy + x4+ %, = 0.

We form the parity-check matrix H whose ith row contains the seven
coefficients of x;, x,, X3, X, Xs, X, X; in the ith equation—namely,

1110100
H=1011010|
0111001

Let w be a received word, written as a column vector. Exercise 26 shows that w
is a code word if and only if Hw is the zero column vector, where we are always
using modulo 2 arithmetic. If w resulted from a single-error transmission in
which the character in the jth position was changed, then Hw would have 1 in
its ith component if and only if x; appeared in ihe ith parity-check equation, so
that the column vector Hw would be the jth column of H. Thus we can decode..
a received word w as follows in the Hamming (7, 4) code of Illustration 4, and
be confident of detecting and correcting any single-position error, as follows.

Parity-F heck Matrix Decoding

1. Compute Hw.
2. If Hw is the zero vector, decode as the first four characters of w.
3. If Hwis the jth column of A, then:

a. if j > 4, deccde as the first four characters of w;
b. otherwise, decode as the first four characters with the jth charac-
ter changed.

4. If Hw is neither the zero vector nor the jth column of H, then more
than one error has been made: ask for retransmission.

ILLUSTRATION 5  Suppose the Hamming (7, 4) code shown in Tabie 1.1 on page 120 is used and
the word w = 0110101 is received. We compute that

(0

1
\ 111010 0ff1 i
Hw=110110100]=|1].
011100 1|1 1

0

1]

Because this 1s the third column of H, we change the third character in the
message portion 0110 and decode as 0100. Note that this is what we obtained
in Illustration 4 when we decoded this word using Table 1.1. =
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Just as we did after Illustration 4, we point out that if two errors are made
in transmission, the preceding outline may lead to incorrect decoding. If the
code word v = 0001011 is transmitted and received as w = 0011001 with two

A

1

Hw =|0],

1

which s column 2 of the matrix A. Thus, decoding by the steps above leads to
the incorrect message word 0111. Note that item 4 in the list above does not
say that if more than one error has been made, then Hw is neither the zero
vector nor the jth column of A.

1. Let the binary numbers 1 through 15 stand

for the letters ABCDEFGHIJKL M
N O, in that order. Using Table 1.1 for the
Hamming (7, 4) code and letting 0000 stand
for a space between words, encode the
message A GOOD DOG.

. With the same understanding as in the

preceding exercise, use nearest-neighber
decoding to decode this received message.

0111001 1111111 1010100 0101110
0000000 1100110 1i11111 1101000
1101110

In Exercises 3 through 11, consider the (6, 3)
linear code C with standard generator matrix

(100 01

11
G= 01010
1011

. Give the paiity-check equations for this

code.

. List the code words in C.
. How many errors can always be detected

using this code?

. How many errors can always be corrected

using this code?

. Assuining that the given word has been

received, decode it using nearest-neighbor
decoding, using vour list of code words in

10.

11.

12.

13.

Exercise 4. (Recall that in the case where
more than one code word is at minimum
distance from the received word, a code
word of minimum distance is selected
arbitrarily.)

. 110111

001011

111011

101010

160101

o B0 T

. Give the parity-check matrix for this code.

. Use the parity-check matrix to decode the

received words in Exercise 7.
Let 2= 1101010111 and v = 0111001110.

Show that for word addition of binary words
u and v of the same length, we have u + v =
u—

If a binary code word # is transmitted and
the received word is w, then the sum u« + w
given by word addition modulo 2 is called
the error pattern. Explain why this is-a
descriptive name for this sum.

Show that for two binary words of the same
length, we have d(u, v) = wt(tt — ¥).
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14. Prove the following properties of the
distance function for binary words u, v, and
w of the same length.
a. d(u. v) = Qifand only ifu = v
b. d(u, v) = d(v, ) (Symmetry)
c. d(u, w) =d(u, v) + div, w)
(Triangle irequality)
d. d(u, v) =du + w,v+w)
(Invariance under translation)
15. Show that B" is closed under word addition.

16. Recall that we call a nonempty subset C of
B" a binary group code if C is closed under
addition. Show that the Hamming (7, 4)
code is a group code. [HinT: To shiow closure
under word addition, use the fact that the
words in the Hamming (7, 4) code can be
formed from those in B* by multiplying by a
generator matrix.]

17. Show that in a binary group code C, the
minimum distance between code words is
equal to the minimum weight of the nonzero
code words.

18. Suppose that you want to be able to
recognize that a received word is incorrect
when m or fewer of its characters have been
changed during transmission. What must be
the minimum distance between code words
to accomplish this?

19. Suppose that you want to be able to find a
unique nearest neighbor for a received word
that has been transmitted with m or fewer of
its characters changed. What must be the
minimum distance between code words to
accomplish this?

b

1)
&

Show that if the minimum nonzero weight of
cnde words in a group code C is at least

2t + 1, then the code can detect any 2¢
errors and correct any ¢ errors. (Compare the
result stated in this exercise with your
answers to the two preceding ones.)

21. Show that if the minimum distance between
the words in an (n, k) binary group code C is
at least 3, we must have

27k = | 4+ p

(iuNi: Let e be the word in B” with | in the
ith position and 0’s elsewhere. Show that ¢,
is not in C and that, for any two distinct
words vand win C,wehave v + ¢ # w + ¢

VECTORS, MATRICES, AND LINEAR SYSTEMS

22,

24,

26.

. Using the formulas in Exercises 21 and 22,

. The 256 ASCII characters are numbered

if i # j. Then use the fact that n must be
large enough so that B contains C and all
words whose distance from some word in C
is1]

Show that if the minimum distance between
the words in an (n, k) binary group code C is
at least 5, then we must have

k=] 4+ HaZ D)
2

[HinT: Proceed as suggested by the hint in
Exercise 21 to count the words at distance 1
and at distance 2 from some word in C.]

find a lower bound for the number of
parity-check equations necessary to encode
the 2* words in B so that the minimum
distance between different code words is at
least m for the given valtues of m and k.
(Note that k = 8 would allow us to encode
all the ASCII characters, and that m = 5
would allow us to detect and correct all
single-error and double-error transmissions
using nearest-neighbor decoding.)

a k=2,m=3 d. k=2,m=5
b. k=4, m=3 e. k=4m=>5
c. k=8, m=3 f. k=8 m=>5

Find parity-check equations for enroding the
32 words in B° into an (n, 5) linear code that
can be used to detect and correct any
single-error transmission of a code word.
(Recall that each character x; must appear in
two parity-check equations, and that for
each pair x;, x; some equation must contain
one of them but not the other.) Try to make
the number of parity-check equations as
small as possible; see Exercise 21. Give the
standard generator matrix for your code.

from 0 to 255, and thus can be represented
by the 256 binary words in B®. Find n — 8
parity-check equations that can be used to
form an (n, 8) linear code that can be used
to detect and correct any single-error
transmission of a code word. Try to make n
the value found in part (c) of Exercise 23.

Let C be an (n, k) linear code with ;
parity-check matrix H. We know that Hc = 0 3
for all ¢ € C. Show conversely that if
w € B"and Hw = 0, then w € C.
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DIMENSION, RANK, AND LINEAR
TRANSFORMATIONS

Given a finite set S of vectors that generate a subspace W of R*, we would like
to delete from § any superfluous vectors, obtaining as small a subset B of S as
we can that still generates W. We tackle this problem in Section 2.1. In doing
so, we encounter the notion of an independent set of vectors. We discover that
such a minimal subset B of S that generates W is a basis for W, so that every
vector in W can be expressed uniquely as a linear combination of vectors in B.

~ We will see that any two bases for W contain the same number of vectors—the

dimension of W will be defined to be this number. Section 2.2 discusses the
relationships among the dimensions of the column space, the row space, and
the nullspace of a matrix.

In Section 2.3, we discuss functions mapping R* into R™ that preserve, in a
sense that we will describe, both vector addition and scalar multiplication.
Such functions are known as linear transformations. We will see that for a
linear transformation, the image of a vector x in R” can be computed by
multiplying the column vector x on the left by a suitable m X n matrix.
Optional Section 2.4 then applies matrix techniques in describing geometri-
cally all linear transformations of the plaine R? into itself.

As another application to geometry, optional Section 2.5 uses vector
techniques to generalize the nctions of line and plane to k-dimensional flats in
Re,

INDEPENDENCE AND DIMENSION

Finding a Basis for a Span of Vectors

Letw,, w,, . . . , w, be vectors in R"and let W = sp(w,, w,, . . . , w,). Now W can
be characterized as the smallest subspace of R” containing all of the vectors w,,
w,, ... .w, because every subspace containing these vectors must contain all

y - .

125
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linea: combinations of them, and consequently must include every vector in
W. We set ourselves the prchlem of finding a basis for W.

Let us assume that {w,, w,, . . . , w,} is not a basis for W. Theorem 1.15
then tells us that we can express the zero vector as a linear combination of the
w; in some nontrivial way. As an i'lustration, suppose that

2WZ - 5W6 + %W7 = 0. (1)

Using Eq. (1), we can express each of w,, w,, and w, as a linear combination of
the other two. For example, we have

1 S
3w = =2w, + 5w, so w, = —6w, + 15w,

We claim that we can delete w, from our list w,, w,, . . . , w,, and the remaining
w;will still span . The space spanned by the remaining w;, which is contained
in W, will still contain w, because w, = —6w, + 15w, and we have seen that W
is the smallest space containing all the w;. Thus the vector w, in the original list
is not needed to span W.

The preceding illustration indicates that we can find a basis for W =
Sp(w,, w., . . ., w;) by repeatedly delcting from the list of w, w,, . . ., w; one
vector that appears with a nonzero coefficient in a linear combination giving
the zero vector, such as Eq. (1), until no such nontrivial linear combination for
0 exists. The final list of remaining w; will still span ¥ and be a basis for Wby
Theorem 1.15.

Find a basis for W = sp([2, 3], [0, 1], [4, —6]) in R~

The presence of the vector [0, 1] allows us to spot that [4, —6] = 2[2, 3] —
12[0, 1], so we have a relation like Eq. (1)—namely,

212, 3] - 12[0, 1] — [4, —6] = [0, 0].

Thus we can delete any one of the three vectors, and the remaining two will

still span . For example, we can delete the vector [4, 6] and we will have =2

W = sp([2, 3], [0, 1]). Because neither of these two remaining vectors is a

multiple of the other, we see that the zero vector cannot be expressed as a 28
nontrivial linear combination of them. (See Exercise 29.) Thus {[2, 3], [0, 1]}is "3

a basis for W, which we realize is actually all of R?, because any two nonzero
and nonparallel vectors span R? (Theorem 1.16 in Section 1.6). =

Our attention is focused on the existence of a nontrivial linear combina-
ton yielding the zero vector, such as Eq. (1). Such an cquation is known as a
dependence relation. ‘e formally define this, and the notions of dependence
and lidependence for vectors. This is a very important definition in our study
of linear algebra.




21 INDEPENDENCE AND DIMENSION 127
DEFINITION 2.1 Linear Dependence and Independence

Let {w,, w,, . . ., w;} be a set of vectors in R". A dependence relation in
this set is an equation of the form

rwpt W, + o +nw =0,  withatleastoner, # 0. (2)

- If such a dependence relation exists, then {wy, Wy, . .., w}is alinearly
de]'?éndent set of vectors. Otherwise, the set of vectors is linearly
. indgpe_lide_nt.

For convenience, we will often drop the word linearly from the terms
linearly dependent and linearly independent, and just speak of a dependent or
indeperdent set of vectors. We will sometimes drop the words set of and refer to
dependent or independent vectors w,, Wy, .. ., W,.

Two nonzero vectors in R” are independent if and only if one is not a scalar
multiple of the other (see Exercise 29). Figure 2.1(a} shows two independent
vectors w; and w, in R", A little thought shows why r,w, + r,w, in this figure can
be the zero vector if and only if r, = r, = 0. Figure 2.1(b) shows three
independent vectors w;, w,, and w; in R". Note how w, & sp(w,, w;). Similarly,
w, & sp(w,, w;) and w; & sp(w,, w,).

Using our new terminology, Theorem 1.15 shows that {w,. w,, . . . , w }isa
basis for a subspace W of R" if and oniy if the vectors w;, w,, . . ., w, span W
and are independent. This is taken as a definition of a basis in many texts. We
chose the “unique linear combination” characterization in Definition 1.17
because it is the most important property of bases and was the natural choice
arising. from our discussion of the solution set of 4x = 0. We state this
alternative characterization as a theorem.

nwtnw, A

(@ (b

FIGURE 2.1
(a) Independent vectors w, and w,; (b) independent vectors w,, w,, and w;,.
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THEOREM 2.1 Alternative Characterization of a Basis

Wisa b"é:s>i's' for. -

We turn to a technique for computing a basis for W = sp(w,, W,, . . ., W)
in R". Determining whether there is a nontrivial dependence relation

XW, + Wy + s W, =0,  some x;# 0,

amounts to determining whether the linear system Ax = § has a nontrivial
solution, where A is the matrix whose jth column vector is w.. The ubiquitous
row reduction appears again! This time, we will get much more information
than just the existence of a dependence relation. Recail that the solutions of
Ax = 0 are identical with those of the system Hx = 0 where [H | 0] is obtained
from [A | ¢] by row reduction. Suppose, for illustration, that H is in reduced
row-echelon form, and that

[(H]0] =

DO OoODODO —
SO CO—~O
SO OO WY
SO = OO

I
S O3 O
SO OO O

| 0 0

(Normally, we would not bother to write the column of zeros to the right of the
partition, but we want to be sure that-you realize that, in this context, we
imagine the zero column to be there.) The zeros above as well as below the
pivots allow us to spot some dependence relations (arising from solutions of
Hx = 0) immediately, because the columns with pivots are in standard basis
vector form. Every nontrivial solution of Hx = 0 is a nontrivial solution of
Ax = 0 and so gives a dependence relation on the column vectors w; of 4. In
particular, we see that

w; = 2w, ~ 3w, and w; = 5w, + 9w, — Tw,,
and so we have the dependence relations
2w, + 3w, +wy; =0 and ~5w, — 9w, + 7w, + w, = 0.

Hence we can delete w; and w, and retain {w,, w,, w,} as a basis for . In order

-to be systematic, we have chosen to keep precisely the vectors w; such that the

jth column of H contains a pivot. Thus we don’t really have to obtain reduced
row-echelon form with zeros above pivots to do this; row-echelon form is
enough. We have hit upon the following elegant technique.
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Finding a Basis for W = sp(w,, Wy, ..., w,)

1. Form the matrix A whose jth column vector is ;.
2. Row-reduce A to row-echelon form H.

3. The set of all w; such that the jth column of H contains a pivot is 2
basis for W.

EXAMPLE 2 Find a basis for the subspace W of R’ spanned by
wl = [1’ _1, 0’ 2: 1]’ w2 = [21 1’ _‘2’ Oa 0]1

w, = [0, -3, 2, 4, 2], w, = [3, 3, -4, -2, —1],
ws=1[2,4,1,0, 1], w, =[5 7, -3, -2,0]

SOLUTION We reduce the matrix that has w; as jth column vector, obtaining

1.2 0 3 2 5 1 2 0 3 2 5
-1 1-3 3 4 7, |0 3-3 6 6 12
0-2 2-4 1 -3~(0-2 2-4 1 -3
2 0 4-2 0-2( [0-4 4-8-4-12
1 0 2-1 1 0 [0-2 2-4-1 -5
i 2 0 3 2 5 1 2 0 3 2 5
0 1-1 2 2 4 |0 1-1 2 2 4
~10 0 0 0 5 5/~(0 0 O O 1 1}
0 0 0 0 4 4 (0 0 0 0 0 O
06 ¢ 0 3 3 00 0 0 0O

Because there are pivots in columns 1, 2, and 5 of the row-echeion form, the
vectors w,, W,, and w; are retained and are independent. We obtain {w,, W,, ws}
as abasisfor W. =

We emphasize that the vectors retained are in columns of the matrix 4
formed at the start of the reduction process. A common error is to take instead
the actual column vectors containing pivots in the row-echelon form H. There
is no reason even to expect that the column vectors of H lie in the column
space of 4. For example,

(1] i
a=[11)~lool=7
and certainly [(1)} is not in the column space of 4.

Note that we can test whether vectors in R” are independent by reducing a
matrix having them as column vectors. The vectors are independent if and
only if row reduction of the matrix yields a matrix with a pivot in every
column. In particular, n vectors in R are independent if and only if row
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reduction of the matrix having them as column vectors yields the n x n 3
identity matrix I. On the other hand, more than #n vectors in R” must be
dependent, because an m X n matrix with m < n cannot have a pivot in every
column.

Determine whether the vectors v, = [1, 2, 3, 1], v, = [2 2,1,3, and v, =
[-1, 2,7, —3] in R* are independent.

Reducing the matrix with jth column vector v;, we obtain

t 2111t 2-11 [t o 3
2 2 2| lo-2-4| [0 1 -2

3 1 7170 -5 10|~|0 0 of
1 3-3 lo t-25 o ¢ o

We see that the vectors are not independent. In fact, v, = 3v, — 2v,. =

The Dimension of & Subspace

We realize that a basis for a subspace W of R” is far from unique. In Example 1, -3
for W = sp([2, 3], [0, 1], [4, —6]) in R?, we discovered that any two of the three - 3§
vectors can be used to form a basis for W. We also know that any two nonzero, -
nonparailel vectors in R? form a basis for R%. Likewise, in Example 2, the
vectors we found for a basis for sp(w,, w,, Wy, W,, w;, W) depended on the order
in which we put them as columns in the matrix 4 that we row-reduced. If we
reverse the order of the columns in the matrix 4 in Example 2, we will wind up
with a different basis. However, it is true that given a subspace W of R, all
bases for W contain the same number of vectors. This is an important result,
which will be a quick corollary of the following theorem.

TH E O RE M 2.2 Relative Sizes of Spannmg and Independent Sets
Let Wbe a subspace of R, Let wl, ‘
span W, and letv, vy, ...,¥ _be vec
Then k =! m :

ctors in Wthat
are independent.

PROOF Let ussuppose that k < r:. We will show that the vectorsv,,v,, .. . ,¥v,
are dependent, contrary to hypothesis. Because the vectors w, w,, ..., w;
span W, there exist scalars g; such that

V= agw, t ayWy o oWy,

Vy = ApW, T GpWy Tt T apW,

©)

Vi = AW, + aryWa +oee T+ QoW i

m

We compute xv, + X%, + -+ + x,v,, in an atternpt to find a dependence
relation by multiplying the first equation in Egs. (3) by x,, the second by x,,
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etc., and then adding the equations. Now the resulting sum is sure to be the
zero vector if the total coefficient of each w; on the right-hand side in the sum
after adding is zero—that is, if we can make

Xa, + Xa,+ - x,a,=0,
Xy t Xy *+ 00+ X4, =0,
Xy + X0, + ¢ 0 + x4, = 0.

This gives us a homogeneous linear system of k equations in m unknowns x;.
Corollary 2 of Theorem 1.17 tells us that such a homogeneous system has a
nontrivia! solution if there are fewsr equaticns than unknowns, and this is the
case because we are supposing that k < m. Thus we can find scalars x;, x,, . . .,
X, not all zero, such that x,v, + x;¥, + -+ - + x,v,, = 0. That is, the vectors
¥, Vo, . . ., ¥,, are dependent if k < m, as we wanted to show. 4

COROLLARY Invariance of Dimension

Any two bases of a subspace W of R" contain the same number of
vectors.

PROOF Suppose that both a sei B with k vectors and a set B’ with m vectors
are bases for W. Then both B and B’ are independent sets of vectors, and the
vectors in either set span W. Regarding B as a set of k vectors spanning ¥ and
regarding B’ as a set of m independent vectors in W, Theorem 2.2 tells us that
k = m. Switching around and regarding B’ as a set of m vectors spanning W
and regarding B as a set of k independent vectors in W, the theorem tells us
that m = k. Therefore, k = m. 4

As the title of the corollary indicates, we will consider the number of
vectors in a basis for a subspace W of R” to be the dimension of W. If different
bases for W were to have different numbers of vectors, then this notion of
dimension would not be well defined (that is, unambiguous). Because different
people may come up with different bases, the preceding corollary is necessary
in order to define dimension. -

DEFINITION 2.2 Dimension of a Subspace

':'_a subspace of R". :The number of elements in a basis for Wis
mension of :¥; and is denoted by dim(W).

Le
the

Thus the dimension of R* is n, because we have the standard basis
{e,, &, . .,¢}. Now R"cannot be spanned by fewer than n vectors, because a
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spanning set can always be cut down (if necessary) to form a basis using the
technique boxed before Example 2. Theorem 2.2 also tells us that we cannot
find a set containing more than »n independent vectors in R". The same
observations hold for any subspace IV of R* using the saime arguments. If
dim(W) = k, then W cannot be spanned by fewer than k vectoss, and an
independent set of vectors in W can contain at most k elements. Perhaps you
just assumed that this would be the case; it is gratifying now to have
justification for it.

Find the dimension of the subspace W = sp(w,, w,, w,, w,) of R® where
w, = [1, -3, 1], w, = [-2,6, ~2], w; = [2, ], —4], and w, = [—1, 10, =7].

Clearly, dim{ ) is no larger than 3. To determine its value, we form the matrix

[ 1 -2 2 —1]
A=[-3 6 1 10|
1 =2 =4 =7

We reduce the matrix A4 to row-echelon form, obtaining

1 -2 2-1] M1 =2 2-1] [1 =2 2-1
-3 6 1 10|~]0 0 7 7/~|0 O 1 1|
1-2-4-7 [0 0-6-6/ [0 0 0 0

Thus the column vectors

1 2
-3| and 1
1 -4

form a Basis for W, the column space of 4, and so dim(H#) =2. =

In Section 1.6, we stated that we would show that every subspace W of R”
is of the form sp(w,, w,, ..., w,). We do this now by showing that every
subspace W # {0} has a basis. Of course, {0} = sp(0). To construct a basis for W
# {0}, choose any nonzero vector w, in W. If W = sp(w,), we are done. If not,
choose a vector w, in W that is not in sp{w,). Now the vectors w,, w, must be
independent, for a dependence relation would allow us to express w, as a
multiple of w,, contrary to our choice of w, not in sp(w,). If sp(w,, w,) = W, we
are done. If not, choose w; € W that is not in sp(w,, ,). Again, no dependence
relation can exist for w,, w,, w; because none exists for w,, w, and because w,
cannot be a linear combination of w, and w,. Continue in this fashion. Now
W cannot contain an independent set with more than n vectors because
no independent subset of R" can have more than n vectors (Theorem 2.2).
The process must stop with W = sp(w,, w,, ..., w,) for some k = n,
which demonstrates our goal. In order to be able to say that everv subspace
of R" has a basis, we define the basis of the zero subspace {0} to be the empty
set. Note that although sp(0) = {0}. the zero vector is not a unigue linear com-
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bination of itself, because r¢ = 0 for ali scalars r. In view of our definition.
we have dim({0}) = 0. '

The construction technique in the preceding paragraph also shows that
every independent subset S of vectors in a subspace W of R” can be enlarged, i
necessary, to become a basis for W. Namely, if S is not already a basis, we
choose a vector in W that is not in the span of the vectors in S, enlarge S by this
vector, and continue this process until S becomes a basis. :

If we know already that dim(#) = k and want to check that a subset S
containing k vectors of W is a basis, it is not necessary to check both (1) that
the vectors in .S span W and (2) that they are independent. It suffices to check
just one of these conditions. Because if the vectors span S, we know that the set
S can be cut down—if necessary, by the technique of Example 2—to become a
basis. Because .S already has the required number of vectors for a basis, no
such cutting down can occur. On the other hand, if we know that .S is an
independent set, then the preceding paragraph shows that .5 can be enlarged, if
necessary, to become a basis. But because .S has the right number of vectors for
a basis, no such enlargement is possible.

We collect the observations in the preceding three paragraphs in a theorem
for easy reference.

THEOREM 2.3 Existence and Determination of Bases

s and d1m(W) =n.
in R".can be enlarged, if neces-

The example that follows illustrates a technique for enlarging an indepen-
dent set of vectors in R” to a basis for R".

Enlarge the independent set {[1, 1, —1], [1, 2, —2]} to a basis for R>.

Letv,=[1,1,—1]andy, =[1,2, —2]. We know a spanning set for R®®>—namely,
{e., &5, 5}, We write R® = sp(v,, v,, e,, e, e;) and apply the technique of Example
2 to find a basis. As long as we put v, and v, first as columns of the matrix to be
reduced, pivots will occur in those columns, so v, and v, will be retained in the
basis. We obtain

i 11 0 0 [t 1100 [t 11 00
1 2 0 1 0|~{0 1 -1 1 o|l~l0 1-t 1 o0l
-1-2 0 0 1) [0-1 1 0 1] [0 0 0 1 1

We sec that the pivots occur in columns 1, 2, and 4. Thus a basis containing v.
and Y2 iS {[]v ]1 —1]5 [1‘ 2: ’42]7 [O 170}} a8
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w

Aset of vectors {w,, w,, . . . , w} in R" is linearly dependent if there exists a
dependence relation

nw, + nw, + - -+ rw, =0,  with at least one r; # 0.

The set is linearly independent if no such dependence relation exists, 5o
that a linear combination of the w; is the zero vector only if all of the scalar
coefficients are zero.

Asset B of vectors in a subspace W of R"is a basis for Wif and only if the set
is independent and the vectors span W. Equivalently, each vector in Wcan
be written uniquely as a liuear combination of the vectors in 3.

If W= sp(w,, W, ..., w,), then the set {w,, w,, . . . , w,} can be cut down, if
necessary, to a basis for /¥ by reducing the matrix 4 having w; as the jth
column vector to row-echelon form H, and retaining w; if and only if the jth
column of H contains a pivot.

Every subspace W of R" has a basis, and every independent set of vectors
in W can be enlarged (if necessary) to a basis for W.

Let W be a subspace of R”. All bases of W contain the same number of
vectors. The dimension of W, denoted by dim(W), is the number of
vectors in any basis for W.

Let W be a subspace of R” and let dim(W) = k. A subset S of W containing
exactly k vectors is a basis for W if either

a. Sis an independent set, or

b. S spans W,

That is, it is not necessary to check both conditions in Theorem 2.1 for a
basis if S has the right number of elements for a basis.

EXERCISES

n

dependent.

Argue geometrically that any set of three
distinct vectors in R? is dependent.

. Give a geometric criterion for a set of two 6. Argue geometrically that every set of four
distinct nonzero vectors in R? to be

distinct vectors in R? is dependent.

In Exercises 7-11, use the technique of Example
2, described in the box on page 129, to find a

Give a geometric criterion for a set of two . ) !

distinct nonzero vectors in R* to be basis for the subspace spanned by the given
vectors.

dependent.

Give a geometric description of the subspace 7. sp([-3, 11, [6, 4]) in R?

of R? generated by an independent set of two

vectors.

Give a geometric criterion for a set of three

8. sp((~3, 11, 9, —=3]) in R?
9. sp((2, 1], [-6, =3, [1, 4]) in R?

distinct nonzero vectors in R® 0 be 10. sp([—2,3, 1], [3, -1, 2], [1, 2, 3], {1, 5, 4])

Jependent.

in R



. sp([l’ 2’ 1’ 2]’ {2? l! 0! _]]7 [—1.- 4) 31 8];

[0, 5, 2, 5]) in R*
Find a basis for the column space of the
matrix
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. If a set of nonzero vectors in R” is
dependent, then any two vectors in the
set are parallel.

¢. Every subset of three vectors in R? is

dependent. )

2 3 1 —— d. Every subset of two vectors in R? is

4= 5 2 1 independent. '

: 1 7 2 —— e If a Subset of two vectors in R? spans R?,
6 -2 0 then the subset is independent.

f. Every subset of R" containing the zero

13. Find a basis for the row space of the matrix vector is dependent.

1357 g If §'is independent, then each vector in

A= [2 0 4 2}' R" can be expressed uniquely as a linear
3287 combination of vectors in S.
— h. If S'is independent and spans R”, then
14. Find a basis for the column space of the each vector in R” cai: be expressed
matrix 4 in Exercise 13. uniquely as a linear combination of

15. Find a basis for the row space of the matrix vectors in S.

A in Exercise 12.

In Exercises 16-25, use the technique illustrated
in Example 3 to determine whether the given set
of vectors is dependent or independent.

{[—'27 3) 1]’ [37 _1> 2]a [77 2: 3]: [‘_1: Sa 4]} in
R3

In Exercises 26 and 27, enlarge the given
independent set to a basis for the entire space R".

30

3

i. If each vector in R" cau be expressed
uniquely as a linear combination of
vectors in S, then S is an independent
set.

j. The subset S is independeat if and only
if each vector in sp(v,, ¥, . . . , ¥;) has a
unique expression as a linear
combination of vectors in 5.

16. {[1, 3}, [-2, —6]} in R?

—AT in R? k. The zero subspace of R” has dimension 0.
17. {[1, 31, 12, =4} n R2 ___ L. Any two bases of a subspace W of R"
18. {[-3, 1], [6, 4} in R contain the same number of vectors.
19. {[-3, 1}, [9, -3]}in R ___m. Every independent subset of R" is a
20. {{2, 1], [-6, —3], [1, 4]} in R? ;ubset _ofdeverydbasis fl())r R".fR )

. — n. Every independent subset of R"1s a
21. {[~1, 2, 1], [2, =4, 3]} in R® . .
2. {1, -3,2). (2. =5, 3], [4, 0, 1]} in R subset of some basis for R".
23. {1, -4,3],{3, -11,2),[1, =3, 4]} in R? 29 Il;et u altlld v{be t}\»{o ‘c'iiffer;:n;vectoc;s in.[}f%". .
_ _ . rove that {u, v} is linearly dependent if an
. %41’ 4 =13L[=1 5,62 11, 13,4, 71 o only if one of the vectors is a multiple of the
" g8 other.

Let v,, v,, v, be independent vectors in R”.
Prove that w, = 3v;, w, = 2v| — v,
and w; = v, + v; are also independent.

Let v,, v,, v, be any vectors in R”, Prove that
w; = 2v, + 3v,, Wy = v, — 2v,,

26. {[1,2, 1]} in R} and w; = ~v, — 3v, are dependent.

E Y]
2. {12, 1, LIL[1,0, 1, 1} in R . 32. Find all scalars s, if any exist, such that
28. Let S = {v, v,, ..., v} be a set of vectors in (1,0, 1], 2, s, 3], [2, 3, !] are independent.

R". Mark each of the following True or False.

—— a. A subset of R" containing two nonzero 33. Find all scalars s, if any exist, such that
distinct parallel vectors is dependent. [1,0.1]. [2. 5, 3], [1, —s. 0] arc independent.
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34. Let v and w be independent column vectors E‘I In Exercises 39-42, use LINTEK to find a basis
in R3, and let 4 be an invertible 3 x 3 for the space spanncd by the given vectors in R".
matrix. Prove that the vectors Av and Aw are 39. v, =[5, 4, 3] vi = [6, 1, 4]
mdependent. v, = [2’ }': 6], v = “’ i, 1]
35. Give an example showing that the v, =[4, 5, —12],
conclusion of the preceding exercise need _ o
not hold if 4 is nonzero but singular. Can 40. 3, - 0, 1,1,12], A i i—=1,4,6, 1],
you also find specific independent vectors v 8, =[3,-2,4,5], 1 B (1,1, 1,3],
and w and 2 singular matrix 4 such that Av 3,=(1,2,01], 3=1[3,7,379
and 4w are still independent? 41. u,=[3,1,2,4, 1], :
36. Let v and w be column vectors in B, and let u, =[3,-2,6,7,-3],
A be an # X n matrix. Prove that, if Av and u=[3,4,-2,1,5],
Aw are independent, v and w are u, =[1,2,3,2, 1],
independent. u = {7, 1, 11,13, -1],
37. Generalizing Exercise 34, let v;, vy, . . . , % T 2,-1,2,3,1]
be independent column vectors in R", and let 2. 0w, =[2,-1,3,4,1,2],
C be an invertible n X »n matrix. Prove that - w, =[-2,5,3, -2, 1, —4],
Fhe vectors Cv,, Cv,, .. ., Cy, are w, =1[2,4,6, 5,2, 1],
independent. w, =11, -1,1,-1,2,2],
38. Prove that if W is a subspace of R" and w; = [1, 8, 10, 2, 5, 1],
dim(¥) = n, then W = R~ w, =[3,0,0,21,5]
MATLAB
Access MATLAB and work the indicated exercise. M1. Exercise 39

If the data files for the text are available, enter
fbc2s1 for the vector data. Otherwise, enter the
vector data by hand.

M2.
M3.
Ma4.

Exercise 40
Exercise 41
Exercise 42

22

THE RANK OF A MATRIX

In Section 1.6 we discussed three subspaces associated with an m x n matrix
A: its column space in R™, its row space in R", and its nullspace (solution space
of Ax = 0) in R". In this section we consider how the dimensions of these
subspaces are related.

We can find the dimension of the column space of A by row-reducing 4 t0
row-echelon form H. This dimension is the number of columns of H having
pivots.

Turning to the row space, note that interchange of rows does not chang¢
the row space. and neither does multiplication of a row by a nonzero scalar. If
we multiply the ith row vector v, by a scalar r and add it to the kth row vector
Vi, then the new kth row vector is rv, + v,, which is still in the row space of 4



22 THE RANK OF A MATRIX 137

because it is a linear combination of rows of 4. But the original row vector v, is
also in the row space of the new matrix, because it is equal to (rv; + ;) + (= 7)¥..
Thus row addition also does not change the row space of a matrix.

Suppose that the rednced row-echelon form of a matrix 4 is

1 0 2 0 35
0 1 -3 0
oo o 1
H=1o 0 0o o 0|
0 0 0 0 0
0 0 0 0 OJ

The configuration of the three nonzero row vectors in their 1st, 2nd, and 4th
components is the configuration of the row vectors ¢,, ¢,, €; in R?, and ensures
that the first three row vcctors of H are independent. In this way we see that the
dimension of the row space of any matrix is the number of nonzero rows in its
reduced row-echelon form, or just in its row-echelon form. But this is also the
number of pivots in the matrix. Thus the dimension of the column space of 4
must be equal to the dimension of its row space. This common dimension of
the row space and the column space is the rank of 4, denoted by rank(A). These
arguments generalize to prove the following theorem. :

T h E O R E M 2 4 Row Rank Equals Column Rank

We know that a basis for the column space of 4 consists of the columns of
A giving rise to pivots in a row-echelon form of 4. We saw how to find a basis
for the nuilspace of A in Section 1.6. We would like to be able to find a basis for
the row space. We could work with the transpose of 4, but this would require

HISTORICAL NOTE THE RANK OF a MaTRIX was defined in 1879 by Georg Frobenius
{1849-1917 as follows: If all determinants of the {r + 1)st degree vanish, but not all of the rth
degree, then r is the rank of the matrix. Frobenius used this concept to deal with the questions of
canonical forms for certain matrices of integers and with the solutions of certain systems of linear
congruences.

The nullity was defined by James Sylvester in 1884 for square matrices as follows: The nullity
of an n X n matrix is { if every minor (determinant) of order n — i + 1 (and therefore of every
higher order) equals 0 and / is the largest such number for which this is true. Sylvester was
interested here, as in much of his mathematical career, in discovering invariants-—properties of
paiticular mathematical objects that do not change under specified types of transformations. He
proceeded to prove what he called one of the cardinal laws in the theory of matrices, that the
nullity of the product of two matrices is not less than the nullity of any factor or greater than the
sura of the nullities of the factors.
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EXAMPLE 1

SOLUTION
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~another r~duction to row-echelon form. In fact, because the elementary row

operations do not change the row space of 4, we simply can take as a basis for
the row space of A the nonzero rows in a row-echelon form. We summarize in a
box.

Finding Rases for Spaces Associated with a Matrix
Let A4 be an m x n matrix with row-echelon form H.

1. For a basis of the row space of 4, use the nonzero rows of H.

. For a basis of the column space of 4, use the columns of 4
corresponding to the columns of H containing pivots.

3. For a basis of the nullspace of 4, use H and back substitution to

solve Hx = 0 in the usual way (see Example 3, Section 1.6).

Find the rank, a basis for the row space, a basis for the column space, and a
basis for the nullspace of the matrix
I3 0-1 2
0-2 4-2 0
A=13 11 -4 -1 6|
2 5 3-4 0
We reduce 4 all the way to reduced row-echelon form, because we also want to
find a basis for the nullspace of A. We obtain
1 3 0-1 2 (1 3 0~1 2/ (1t 0 6 -4 2
0-2 4-2 0 (0-2 4-~2 0 |0 1-2 1 0
A=13 11 -4-1 60 2-4 2 070 0 0 0 0
2 5 3-4 0 [0-1 3-2-4] [0 0O 1 -1 -4
I 0 0 2 26
0 I ©0-1-8 3
0 0 1 -1 -4~ )
0 6 0 6 0

Because the reduced form H contains three pivots, we see that rank(4) = 3.
As a basis for the row space of 4, we take the nonzero row vectors of H,
obtaining

{{1,0,0,2,26],[0,1,0,-1, 8], (0,0, 1, —1, —4]}. E

Notice that the next to the last matrix in the reduction shows that the first
threc row vectors of 4 are dependent, so we must not take them as a basis for
the row space.
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Now the columns of 4 in which pivots appear in H form a basis for the
column space, and from H we see that the solution of Ax = 0 is

—2r — 265 -2 -26
r+ 8s l 8
x=| r+ 4si=r + 3| 4|. Thus we have the following bases:

r 1 0
S

§

The Rank Equation

Let A be an m X n matrix. Recall that the nullspace of A—that is, the solu-
tion set of Ax = @, has a basis witli as many vectcrs as the number of free
scalar variables, like r and s, appearing in the solution vector above. Because
we have one free scalar variable for each column without a pivot in a
row-echelon form of 4, we see that the dimension of the nullspace of A4 is the
number of columns of 4 that do not contain a pivot. This dimension is called
the nallity of 4, and is denoted by nullity(4)..Because.the.number of columns
that do have a pivot is the dimension, rank(4), of the column space of A, we see
that

1
E [ 0 =21 |26
o 4 i 8
Column space: {|3 |, 1 Null space: {| 1 4
1 0
0 1

5 3

rank(4) + nullity(4) = n, Rank equation

where 7 is the number of columns of 4. This equation turns out to be very
useful. We summarize this equation, and the method for computing the
numbers it involves, in a theorem.

THEOREM 2.5 Rank Equatlon

Let Abeanm X nm
L nullity(d) =
Ax = 0) = ,
rank(4) (Number of p1vots in b G5
(Rank equatzon rank(A) + nulhty(A) (N'_ 'ber of columns of A)

o,

Hw

Because nullity(4) is defined as the number of vectors in a basis of the
nullspace of 4, the invariance of dimension shows that the number of free
variables obtained in the solution of a linear system Ax = b is independent of
the steps in the row reduction to echelon form, as we asserted in Section 1.4.
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EXAMPLE 2 Ilustrate the rank equation for the matrix 4 in Example 1.

SOLUTION The matrix 4 in Example 1 has 7 = 5 columns, and we saw that rank(4) = 3
and nullity(4) = 2. Thus the rank equationis3 +2=15. «

Our work has given us still another criterion for the invertibility of a
square matrix.

THEOREM 2.6 An Invertibility Criterion

Ann X n matrix 4 is invert

SUMMARY-

1. Let Abean m x nmatrix. The dimension of the row space of 4 is equal to
the dimension of the column space of 4, and is called the rank of A,
denoted by rank(4). The rank of 4 is equal to the number of pivots in a
rew-echelon form H of 4. The nullity of A, denoted by nullity(4), is the
dimension of the nullspace of A—that is, of the solution set of Ax = 0.

2. Bases for the row space, the column space, and the nullspace of a matrix 4
can be found as described in a box in the text.

3. (Rank Equation) For an m X n matrix 4, we have

rank(4) + nullity(4) = n.

i EXERCISES

121 [ 023 l-l
For the matrices in Exercises 1-6, find (a) the 5. (2 10 2} 6. _;' g ; g
rank of the matrix, (b) a basis for the row space, 0211 4012

(c) a basis for the column space, and (d) a basis

Jor the nullspace. In Exercises 7-10, determine whether the given

matrix is invertible, by finding its rank.

F B 0-9-9 2 -
L. [2 O —E ” 2. .1. 2 1o 1 2 1 1 2 3 1
13 4 2 2 [j 1 -2 4 7. 4 1-3 4 814 -1 2
0 4 -1 2 -3 4
13 2 0 oo
fo6 6 3] (3 1 4 2] 20 ‘] 3 g -1 z]
A S R A S 9.10 0 4| BTN : (1) ]~
ST e v 12 4 0]
o3 2 o 1o -1 2 6 -3 1]
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11. Mark each of the following True or False.

___a, The number of independent row vectors
in a matrix is the same as the number of
independent column vectors.

b. If H is a row-echelon form of a matrix 4,
then the nonzero column vectors in
form a basis for the column space of 4.

. If H is a row-echelon form of a matrix A4,
then the nonzero row vectors in H are a
basis for the row space of A.

__d. If an n X n matrix A is invertible, then

rank(4) = n.
e. For every matrix 4, we have rank(4) > 0.
f. For all positive integers m and n, the
rank of an m X n matrix might be any
number from 0 to the maximum of m
and n.

__— g- For all positive integers m and n, the
rank of an m X n matrix might be any
number from 0 to the minimum of m
and n.

- h. For all positive integers m and n, the
nullity of an m X n matrix might be any
number from 0 to 7.

—— i. For all positive integers m and n, the
nullity of an m X n matrix might be any
number from 9 to m.

—— J. For all positive integers m and n, with
m = n, the nullity of an m X n matrix
might be any number from 0 to n.

12. Prove that, if 4 is a square matrix, the
nullity of A is the same as the nullity of A”.

13. Let A be an m X n matrix, and let b be an
n X 1 vector. Prove that the system of
equations Ax = b has a solution for x if
and only if rank(4) = rank(4 | b), where
rank (4 | b) represents the rank of the
associated augmented matrix [4 | b] of the
system.

In Exercises 14-16, iet A and C be matrices such
that the product AC is defined.

14. Prove that the column space of AC is
contained in the column space of A.

15. Is it true that the column space of AC is
contained in the column space of C?
Explain. '

16. State the analogue of Exercise 14 concerning
the row spaces of 4 and C.
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17. Give an example of a 3 X 3 matrix 4 such
that rank(4) = 2 and rank(4’) = 0.

In Exercises 18-20, let A and C be matrices such
that the product AC is defined.

18. Prove that rank(4C) < raak(4).
19. Give an example where rank(4C) < rank(4).
20. Is it true that rank(4C) = rank(C)? Explain.

It can be shown that rank(A™A) = rank(d) (see
Theorem 6.10). Use this rzsult in Exercises 21-23.

21. Let A be an m X 1 matrix. Prove that
rank(4(A47)) = rank(4).

22. Ifaisann X 1 vectorandbisal X m
vector, prove that ab is an n X m matrix of
rank at most one.

23. Let 4 be an m X n matrix. Prove that the
column space and row space of (47)4 are the
same.

24. Suppose that you are using computer
software, such as LINTEK or MATI.AB, that
will compute and print the reduced row-
echelon form of a matrix but does not
indicate any row interchanges it may have
made. How can you determine what rows of
the original matrix form a basis for the row
space?

EI In Exercises 25 and 26, use LINTEK or MATLAB

to request a row reduction of the matrix, without
seeing intermediate steps. Load data files as usual
if they are available. (a) Give the rank of the
matrix, and (b} use ihe software as suggested in
Exercise 24 to find the lowest numbered rows, i::
consecutive order, of the given matrix that form a
basis for its row space.

2 -3 0 1 4
1t 4 -6 3 -2
5. 4 0 1l -12 5 -8
4 -1 5 3 7
-t 1 3 -6 8§ -2
-3 s 3 1 4 8
26. B=| | -3 3 -13 12 -12
0 2 -6 19 -20 14
| 5 13 =21 3 {1 6
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DIMENSION, RANK, AND LINEAR TRANSFORMATIONS

ki X“"éﬁﬁ-mn« ﬂ

2.3

LINEAR TRANSFORMATIONS OF EUCLIDEAN SPACES

When we introduced the notation 4x = b and indicated why it is one of the
most useful notations in mathematics, we mentioned that we would see that
we coutd regard 4 as a function and view Ax = b as meaning that the function
maps the vector x to the vector b. If 4 is an m X n matrix and the product Ax is
defined, then x € R" can be viewed as the input variable and b € R™ can be
viewed as the output variable.

Functions are used throughout mathematics to study the structures of sets
and relationships between sets. You are familiar with the notation y = f(x),
where fis a function that acts cn numbers, signified by the input variable x,
and produces numbers signified by the output variable y. In linear algebra, we
are interested in functions y = f{x), where f acts on vectors, signified by the
input variable x, and produces vectors signified by the output variable y.

In general, a function f: X — Y is a rule that associates with each x in the
set X an element y = f(x) in Y. We say that fmaps the set X into the set ¥ and
maps the element x to the element y. The set Xis the domain of fand the set Yis
called the codomain. To describe a function, we must give its domain and
codomain, and then we must specify the action of the function on each &
element of its domain. For any subset H of X, we let f[H] = {f(h) | h € H}; the .
set f[H] is called the image of H under f. The imnage of the domain of fis the
range of f. Likewise, for a subset K of Y, the set f![K] = {x € X | f(x) € K}is .}
the inverse image of K under /. This is illustrated in Figure 2.2. For example, 2
if f: R — R is defined by f(x) = x, then f[{1, 2, 3}] = {1, 4, 9} and /*'[{1, 4, 9}]
={-1,1,-2,2, -3, 3} In this section, we study functions known as /inear
transformations T that have as domain R" and as codomain R™, as depicted in
Figure 2.3.

The Notion of a Linear Transformation

Notice that for an m X n matrix 4, the function mapping x € R" into 4x in R”
satisfies the two conditions in the following definition (see Example 3).

DEFINITION 2.3 Linear Transformation

A function 7: R* — R™ is a linear transformation if it satisfies two

conditions: _
1. T(u+v)=T(u) + T(v) Preservation of addition
2. T(ra) = rT(n) Preservation of scalar multiplication

for all vectors u and v in R" and for all scalars r.

From properties | and 2, it follows that T'{ru + sv) = rT(u) + s7() for al
u, v € R"and all scalars r and s. (See Exercise 32.) In fact, this equation can b 3§
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FIGURE 2.2
(a) The image of H under £; (b) the inverse image of K under 1.

extended to any number of summands by induction—that is, forv,,v,, . ..

in R™ and scalars r,, r,, . . . , 1}, we have

T(ryy, + iy, + - o« +ry) = nT(v,) + 1nT(v) + -+ +rT(vy).

Equation (1) is often expressed verbally as follows:

143

1)

Domain of T Range of T

FIGURE 2.3
The linear transformation T{x) = Ax.
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EXAMPLE 1

SOLUTION

EXAMPLE 2

SOLUTION

EXAMPLE 3

SOLUTION
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We claim that if 7: R* — R™ is a linear transformation, then 7 maps the
zero vector of R” to the zero vector of R™, Just observe that scalar multiplica-
tion of any vector by the zero scalar gives the zero vector, and property 2 of the
definition shows that

T(0) = T(00) = 0T(0) = 0.
Show from Definition 2.3 that the function 7: R— R defined by 7(x) = sin x is
net a linear transformation.

We know that

. m s T s (T
sm(z + Z) # sm(z) + s1n(z),
because sin(n/4 + w/4) = sin(w/2) = 1, but we have sin(#/4) + sin(n/4) =

1/NV2 + 1VZ = 2/\/2. Thus, sin x is not a linear transformation, because it
does not preserve addition. =

Determine whether 7: R2 — R? defined by T([x,, X,]) = [%;, X, — Xp, 2%, + X;] iS
a linear transformation.

To test for preservation of addition, we let w = [u,, u,] and v = {v,, v,], and E
compute ’
T+ v)=T(u, + v, u, + 1))
=[u, + v u + "'1_1‘2_"2;2141"'2"1 +u, + v
= [y, g — Uy, 24, + wy] + [V, vy — v, 2v, + W3]
= T(u) + T(v),
and so vector addition is preserved. To test for preservation of scalar
multiplication, we compute
T(ru) = T([ru,, ri,)) = [ruy, ru, — ru,, 2er¢I + ru,)
= rluy, U, — Uy, 20, + ty)
= ”‘T b i

{ur)
\4)

Thus, scalar multiplication is also preserved, and so 7 is a linear transforma-
tion. «

Let A be an m X 7 matrix, and let T, R" — R™ be defined by T',(x) = Ax fors
each colurmn vector x € R". Show that T, is a linear transformation.

This follows from the distributive and scalars-pull-through properties ©
matrix multiplication stated in Section 1.3—namely, for any vectors u and ¥
and for any scalar r, we have

T(a+v)=Au+v)= Ao+ Av=T,(a} + T (v)
and

T,(ru) = A(ru) = r(Au) = rT,(u).
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SGLUTION
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These are precisely the conditions for a linear transformation given in
Detinition 2.3. = '

Looking back at Example 2 we see that, in column-vector notation, the
transformation there appears as

. x| |10 1
T([;D= x = x| =1 —1 m.
2 2+ x) 2 17

Based on Example 3, we can conclude that T is a linear transformatior,
obviating the need to check linearity directly as we did in Example 2. In a
moment, we will show that every linear transformation of R” into R™ has the
form T(x) = Ax for some m X n matrix 4. This is especially easy to see for
lincar transformations of R into R.

Determine all linear transformations of R into R.

Let 7: R — R be a linear transformation. Each element of R can be viewed
either as a vector or as a scalar. Let ¢ = T(1). Applying Property 2 of
Definition 2.3 with u = 1 and r = x, we obtain

T(x) = T(x(1)) = xT(1) = xa = ax. -

Identifying a with the 1 X 1 matrix 4 having a as its sole entry, we see that we
have T'(x) = Ax, and we know this transformation satisfies properties ! and 2
in Definition 2.3. From a geometric viewpoint, we see that the linear
transformations of R into R can be described as precisely those functions
whose graphs are lines through the origin. =

Example 4 shows that a linear transformation of R into R is completely
determined as soon as 7'(1) is known. More generally, a linear transformation
T: R"— R™is uniquely determined by its values on any basis for R”, as we now
show. -

THEOREM 2.7 Bases and Linear Transformations

'be linea~ transfoxmatlon and letB {b,, b, ...,b}
R". For any vector v'ini R”, the vector. T (v) is uniquely
by the vcctors T(b,), T(bz) , T(b,)."

PROOF Let v be any vector in R”. We know that because B is a basis, there
exist unique scalars ry, r,, . . ., r, such that

vy=nrb t+nrb+ - +rb.
Using Eq. (1), we see that
T()=T(rbd, +rby+ - +rb)=nrTh)+rnTh)+ - +rTb)
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Because the coefficients r, are uniquely determined by v, it follows that T'(v) is
completely determined by the vectors T(b) fori=1,2,...,n 4

Theorem 2.7 shows that if two linear transformations have the same value
at each basis vector b, then the two transformations have the same value at
each vector in R", and thus they are the same transformation.

COROLLARY Standard Matrix Regresentation of a Linear Transformation

Let 7: R — R™ be a linear transiormation, and let 4 be the m X n
matrix whose jth column vector is T{e), which we denote symbolically
as

I

A=\T(e) T(e,) - T(e,)|. @)
l

|

Then T'(x) = Ax for each column vector x € R".

PROOF  Recall that for any matrix A4, Ae; is the jth column of 4. This shows at
once that if 4 is the matrix described in Eq. (2), then A¢; = T'(e)), and so T"and
the linear transformation T, given by T,(x) = Ax agree on the standard basis
{e;, ey ..., e} of R". By Theorem 2.7, and the comment following this
theorem, we know that then T'(x) = T ,(x) for every x € R"—that is, T(x) = 4Ax
foreveryx e R". &

The matrix 4 in Eq. (2) is the standard matrix representation of the linear

transformation 7.

Let T: R? — R® be the linear transformation such that
T(e) =1[2,1,4] and T(e;) = (3,0, -2].

Find the standard matrix representation A of T and find a formula for
T(['xl.‘ X2D

Equation (2) for the standard matrix representation shows that
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In row-vector notation, we have the formula

T([xi: XZ]) = [2X1 + 3xz, X 4Xl - 2)(1], ]

Find the standard matrix representation of the linear transformation

4 T: R* - R® where

T([x), x5 X3, X,]) = [x; = 3x3, 2%, — X, + 3x,, 8x, — 4x, + 3x; — x,]. 3)
We compute
T(e)=T(1,0,0,0)) =0, 2, 8], T(e,) = T([0, 1, 0,0]) = [1, — 1, —4]
T(e;)=T(0,0,1,0]) = [-3,0, 3], T(e)) = T([0, 0,0, 1]) = [0, 3, —1].
Using Eq. (2), we find that '

0 1-3 o0
A={2 -1 0 3|
8§ -4 3 —i

Perhaps you noticed in Example ¢ that the first row of the matrix 4
consists of the coefficients of x,, x,, x,, and x, in the first component x, — 3x; of
T([x,, x,, X3, X,])- The second and third rows can be found similarly. If Eq. (3)
is written in column-vector form, the matrix 4 jumps out at you immediately.
Try it! This is often a fast way to write down the standard matrix representa-
tion when the transformation is described by a formula as in Example 6. Be
sure to remember, however, the Eq. (2) formulation for the standard matrix
representation.

We give another example indicating how a linear transformation is
determined, as in the proof of Theorem 2.7, if we know its values on a basis for
its domain. Note that the vectors u = [—1, 2] and v = [3, —5] are two
nonparallel vectors in the plane, and form a basis for R2

Let u = [-1, 2] and v = [3, —=5] be in R?, and let T: R* — R’ be a linear
transformation such that 7(u) = [-2, 1, 0] and T(v) = [5, 7, 1]. Find the
standard matrix representation 4 of T and compute T([—4, 3]).

To find the standard matrix representation of T, we need to find T'(e,) and
T'(e,) for e,, e, € R. Following the argument in the proof of Theorem 2.7, we
express €, and e, as linear combinations of the basis vectors u and v for R?,
where we know the action of T. To express e, and e, as linear combinations of u
and v, we solve the two linear systems 4Ax = e, and Ax = e,, where the

‘coefficient matrix 4 has u and v as its column vectors. Because both systems

have the same coefficient matrix, we can solve them both at once as follows:

EE I A R
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We see that e; = 5u + 2v and e, = 3u + v. Using the linearity properties,

T(e) = T(5u + 2v) = 5T(u) + 2T(v) = 5[-2, 1, 0] + 2[5, 7, 1]
=0, -9, 2]

and

T(e)) = T(Bu+v)=3T@) + T(v)=3[-2,1,0]1 + [5, -7, 1]
=[-1 -4, 1].

The standard matrix representation 4 of T and T([—4, 3]) are
[0 -t 4 0 ~1] 0 (-3
4=|-9 -4 and T([ J): -9 -4[ 3}= 24|,

| 2 1 ' 2 1 -5

Some Terminology of Linear Transformations

The matrix representaiion 4 of a linear transformation 7: R* — R is a great
help in working with 7. Lei us use column-vector notation. Suppose, for
example, we want to find the range of T—that is, the set of all elements of R™
that are equal to T'(x) for some x € R". Recall that we use the notation 7[R"] to
denote the set of all these elements, so that TR"] = {T'(x) | x € R"}. Because
T(x) = Ax, we have T[R"] = {4x | x € R"}. Now 4x is a linear corabination of
the column vectors of 4 where the coefficient of the jth column of 4 in the
linear combination is x; the jth component of the vector x. Thus the range of T
is precisely the column space of 4.

For another illustration, finding all x such that T(x) = 0 amounts to
solving the linear system Ax = 0. We know that the solution of this
homogeneous linear system is a subspace of R”, called the nullspace of the
matrix 4. This nullspace is often called the kernel of T as well as the nulispace
of T, and is denoted ker(7).

Let W be a subspace of R". Then W = sp(b,, b,, ..., b)) where B =

{b, b,, ..., b} is a basis for W. Because T preserves linear combinations, we
have
T(rb, + by + -+ rd) =rT() +rT(hy) + - - + rT(h)

This shows that T[W] = sp(T(by), T(by), ..., T(b)), which we know is a
subspace of R™.
We summarize the three preceding paragraphs in a box.

Let T: R" — R be a linear transformation with standard matrix ‘

representation 4. ‘

1. The range T[R"] of T is the column space of-4 in R™. l

2. The kernel of T is the nullspace of 4 and is denoted ker(7). ,

3. If Wis a subspace of R”, then T[F] is a subspacc of & thatis. T ;
preserves subspaces. /J

E
=2
2
:%
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Find the kernel of the linear transformation T: R? — R? where T([x,, X;, X;])
=[x, — 2x, x; + 4x3).

We simply find the nullspace of the standard matrix representation .1 of T.
Writing down and then ieducing the matrix 4, we have

b b bt

Thus we find that ker(T) = sp([—4, -2, 1]). =

Matrix Operations and Linear Transformations

It is very fruitful to be able to hop back and forth at will between matrices and
their associated linear transforriations, Every property of matrices has an
interpretation for linear transformations, and vice versa. For example, the
rank equation, rank(4) + nullity(4) = n, for an m X n matrix 4 becomes

dim(range T) + dim(ker(7)) = dim(domain T).

The dimension of range T is called the rank of T, and the dimension of ker(7)
18 called the nullity of 7.

Also, matrix multiplication and matrix inversion have very signifi-
cant analogues in terms of transformations, Let 7: R"— R™ and T': R™ — R¥
be two linear transformations. We can consider the composite function
(T o T): R" - R* where (T" » T)(x) = T'(T(x)) for x € R". Figure 2.4 gives a
graphic illustration of this composite map.

Now suppose that 4 is the 71 X n matrix associated with T'and that B is the
k X m matrix associated with 7". Then we can compute 7"(T(x)) as

T(T(x)) = T'(4%) = BA).
But
B(Ax) = (BA)x, Associativity of matrix multiplication

$0 (T" o TYx) = (BA)x. From Example 3, we see that 7" o T is again a linear
transformation, and that the matrix associated with it is the product of the
matrix associated with 7" and the matrix assuciated with 7, in that order.
Notice how easily this follows from the associativity of matrix multiplication.

T oT

)
g AN

X I - y = Ax By =B(Ax)
Rl | RE

FIGURE 2.4
The composite map T’ < 7.
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" Thus, 7 applied twice—that is, T T—rotates the plane through 26. Replacing -
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It really makes us appreciate the power of associativity! We can also show
directly from Definition 2.3 that the composite of two linear transformations
is again a linear transformation. (See Exercise 31.)

Matrix Multiplication and Composite Transformations

A composition of two linear transformations 7 and 7" yields a
linear transformation 7" o T having as its associated matrix the
L product of the matrices associated with 7" and 7, in that order.

i
i
!

This result has some surprising uses.

(The Double Angle Formulas) It is shown in the next section that rotation of the
plane R? counterclockwise about the origin through an angle 6 is a linear
transformation 7: R? — R? with standard matrix representation

{oos # —sin 6]

\ . Counterclockwise rotation through 6 &)
sin§ cos 6

6 by 26 in matrix (3), we find that the standard matrix representation for 7o T
must be -

{COS 28 -—sin 26 @) .
sin 20  cos 26|° :

L

On the other hand, we know that the standard matrix representation for the -
composition T e T must be the square of the standard matrix representation -
for T, and so matrix (4) must be equal to

cos 6 —sin 6] (cos 6 -sin 6| _ (cos’d —sin’d —2sin fcos 8] (5
sinf cosf||sinf cos b 2sin §cos 6 —sin’6 + cos’6)’

Comparing the entrics in matrix (4) with the finai resuit in Eq. (5), we obtain
the double angle trigonometric identities

sin20=2sin 8cos 8 and cos 26 = cos?f — sin?. u

Let us see how matrix invertibility reflects a corresponding property of the -
associated linear transformation. Suppose that 4 is an invertible n X n matrix,
and let T: R* — R" be the associated linear transformation, so that y = 7(x)
= Ax. There exists a linear transformation of R" into R" associated with A~*; we
denote this by 77!, so that T7'(y) = A47'y. The matrix of the composite
transformation 7' o T is the product 4™'4, as indicated in the preceding box.
Because 47'4 = I'and Ix = ¢, we see that (77'e T)(x) = x. That is, T~'o T'is the
identity transformation, leaving all vectors fixed. (See Fig. 2.5.) Because AA4™
= [ too, we see that 7o 7! is also the identity transformation on R~ If
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T
x =A"Ax P

LA T,
! °TQ\ e

[Rn

FIGURE 2.5
T™' o T is the identity transformation.

y = T(x), then x = T~!(y). This transformation 7! is the inverse transforma-
tion of T, and T is an invertible linear transformation.

Invertible Matrices and Inverse Transformations

Let A be an invertible # X # matrix with associated linear
transformation 7. The transformation T ' associated with 4~! is the
inverse transformation of T, and T > T"' and 7' ° T are both the
identity transformation on R". A linear transformation T: R* — R~
is invertible if and only if its associated matrix is invertible.

Show that the linear transformaticn 7 R®* — R® defined by T'([x,, x,, x;]) =
[x, = 2x, + X3, X, — X3, 2x, — 3x;] is invertible, and find a formula for its
inverse.

Using column-vector notation, we see that T(x) = Ax, where
1 -2 1
A=0 1 -1
0 2 -3

Next, we find the inverse of 4:

-2 tlroo] [1 ¢-1 120] (i 0 0f1 4-1
0 1 -1{010|~0 1-1]0 1 Of~|0 I O0]0 3 -1
0 2-3({001 0 0-1|0-2 1J 0 0 110 2 -1
Therefore,
1 4 ~1f|x x, +dx, — x,
T7'(x)=A4A"x=[0 3 -1||x(= 3%, = X,
O 2_1 .X3 2x1'_.X3

which we express in row notation as
TNlxy, X5 X30) = [, + 4%, — X5, 3%, — X3, 2%, — X3

In Exercise 30, we ask you to verify that 7-4(7(x)) = x, as in Figure 2.5. =
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. A linear transformation T: R" — R™ is uniquely determined by T'(b,),

. Let T: R*— R™ be a linear transformation and let 4 be the m X n matrix

. Let 7: R"— R™ and T": R™ — R* be linear transformations with standard

\ functioa T: R"— R™ is a linear transformation if T(a + v) = T(u) + T(v)
and T(ru) = rT(u) for all vectors u, v € R” and =1l scalars r.
If Ais an m X n matrix, then the function 7,: R* > R™ given by T (x) = Ax
for al! x € R" is a linear transformation.

T{b,), . . ., T(b,) for any basis {b;, b,, . . ., b} of R".

whose jth column vector is T'(e)). Then T'(x) = Ax for all x € R”; the matrix
A is the standard matrix representaiion of 7. The kernel of T is the
nullspace of 4, and the range of T is the column space of A.

matrix representations 4 and B, respectively. The composition 7' o T of
the two transformations is a linear transformation, and its standard matrix
representation is BA.

If y = T(x) = A(x) where A4 is an invertible # X # matrix, then 7T is
invertible and the transformation 7' defined by T-'(y) = A"y is the
inverse of T. Both 7! e T'and 7"» T~ are the identity transformation of R".

L Is T([x, X, X)) = [x, + X, %, — 3x)] 2 7. I T(L, 0, 0] = [3, 1, 2], T([0, 1, C]) =
linear transformation of R® into R?? Why or [2, ~1, 4], and T([0, 0, 1]) = [6, O, 1], find
why not? (2, -5, 1)).

2. Is T([x,, x;, x5]) = [0, 0, 0, 0] a linear 8. If T(IL. 0 =[=3 11 T(10. 1. O) =
transformation of R? into R*? Why or why ) [4 _([1]’ a’ng])T([O[ _'1 ]1’]) i[ [’3 " 5]]) find
pot? T(-1, 4, 2)).

3. Is T([x;, xp, X35]) = [l , 1, 1] a linear
transformation of R? mto R*? Why or why

not?
4. Is T([x, x;)) =

why not?
1. IfT([1,2, -3]) = [1,0,4,2], T(3, 5, 2)) =
In Exercises 5~12, assume that T is a linear {-8,3,0,1},and T([-2, -3, —4]) =
transformation. Refer to Example 7 for Exercises [0, 2, -1, 0], find 7[5, -1, 4]).
9-12, if necessary. [Computational aid: See Example 4in
Section 1.5.]

-5 If T([1, 0) = [3, —] and T([0, 1]) = 12. IET(2, 3,0]) = 8, T([1, 2, ~1]) = -5, and

(=2, 5. find T[4, =61 T([4, 5, |]) = 17, find T([~3, 11, —4]).

: - X, X+ 1,3x, — 2x] a 10. If 7([-1, 1) =[2, 1, 4] and T((1, 1]} =
linear transformation of R? into R*? Why or

t AN . Tt N n'l POt o
111\["1 4} = 11, vy, V) a u 4

[0, 1, 2], find T([0, 10]).

_v:

[—Gs 3y 2]a find T([x’ y])

6. (FT(~1, 0 = [2, 3] and T(I0. 1]) = [5, 1].
find T([-3, -5]).

[Computational aid: See the answer (o
Exercise 7 in Section 1.5.]
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In Exercises 13-18, the given formula defines a
linear transformation. Give its standard matrix
representation.

13. T([x;, x,]) =[x + X3, ¥y — 3x)]
14. T([x,, x)]) = [2x; = X3, X; + X5, X, + 3x,]
15. T([x), X5, X5]) = [x; + X + X3 X + X5, X))
16. T([x,, X3, x3]) = [2x; + X3 + X3, X, + X, + 3x3)
17. T([x), X5 X3]) = [, = X3 + 3x3, %, + X, + X3, ]
18. T([xy, X3, X3]) = x; + X + X3
19, If T: R? - R} is defined by T([x,, x,]) =
[2x, + X35 X}, X, = X;] and T": R — R? is
defined by T'([x, X, X3]) =
[x, = x, + X3, X, + x|, find the standard
matrix representation for the linear

transformation 7" ¢ T that carries R? intoc R2
Find a fermula for (T  T)([x,, X,]).

20. Referring to Exercise 19, find the standard
matrix representation for the linear

transformation T T that carries R? into R’
Find a formula for (T T")([x,, X;, X3])-

In Exercises 2128, determine whether. the
indicated linear transformation T is invertible. If
it is, find a formula for T~!(x) in row notation. If
it is not, explain why it is not.

21. The transformation in Exercise i3.
22. The transformation in Exercise 14.
23. The transformation in Exercise 15.
24. The transformation in Exercise 16.
25. The transformation in Exercise 7.
26. The transformation in Exercise 18.
27. The transformation in Exercise 19.
28. The transformation in Exercise 20.

29. Mark each of the following True or False.

—— a. Every linear transformation is a function.

___b. Every function mapping R" into R™ is a
linear transformation.

—— ¢ Composition of linear transformations
corresponds to multiplication of their
standard matrix representations.

— d. Function composition is associative.
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- e. An invertible linear iransformation
mapping R* into itself has a unique
inverse.

_— {. The same matrix may be the standard
matrix representation for several different
linear transformations.

— g Alinear transformation having an m X n
matrix as standard matrix representation
maps R" into R™, '

—h. If T and T are different linear
transformations mapping R* into R™, then
we may have T(e;) = T”(e;) for some
standard basis vector e; of R".

_i. If Tand T” are different linear
transformetions mapping R” into R~, then
we may have T(e;) = T"(e;) for all
standard basis vectors ¢; of R”,

— . IfB=1{b,b,...,Db}is abasis for R*
and T and 7" are linear transformations
mapping R" into R™, then T'(x) = T"'(x)
for all x € R"if and only if T(b,) = T'(b)
fori=1,2,...,n

30. Verify that T-'(T'(x)) = x for the linear

transformation T in Example 9 of the text.

31. Let T: R" > R" and T': R™ — R* be linear

transformations. Prove directly from
Definition 2.3 that (7" ° T) R" — R* is also a
linear transformation.

32. Let T: R* > R™ be a linear transformation.
Prove from Definition 2.3 that T(ru + sv)
= rT(u) + sT(v) for all u, v € R" and all
scalars r and s.

Exercise 33 shows that the reduced row-echelon
form of a matrix is unique.

33. Let 4 be an m X n matrix with row-echelon
form H, and let ¥ be the row space of A (and
thus of H). Let W, = sp(e;, e, .. ., €
be the subspace of R” generated by the first &
rows of the #n X n identity matrix. Consider
T,: V- W, defined by

Tk([‘xh PO TR -xn])

=[x, X35 00 -» X 0, ..., O

. a, Show that T, is a linear transformation of
Vinto W, and that T,[V] =
{T,(¥) | vin ¥} is a subspace of W..
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b. If T,[V] has dimension d,, show that, for [—4 5 7 [8 ~3}
each j < n, we have either d,, = dj or 4., A=| 2 4 5|, B=|l 4|,
=d +1. t I 8 -5 [2 5

¢. Assume that 4 has four columns.

Referring to part (b), suppose that d, = d, C= [_5 3 _6} and
= | and d; = d, = 2. Find the number of 7 -1

pivots in H, and give the location of each. D= [ 3 -4 I]

d. Repeat part (c) for the case where 4 has 2 5 0
six columns and d, = |, d, = d, =d, = 2,
and d; = d, = 3. respectively. Use LINTEK or MATLAB to
¢. Argue thai, for any matrix 4, the number compule the indicated quantity, if it is defined.
of pivots and the location of each pivot Load data files for the matrices if the data files
in any row-echelon form of 4 is always are available.
the same. ]
f. Show that the reduced row-echelon form 35, (T, > T,o T(1, 2, 1]) 4
of a matrix A is unique. [Hint: Consider

o -l —
the nature of the basis for the row space 36. (Ty o Ty e T)([0, ~1])
of 4 given by the nonzero rows of H.] 37. (Tye (To Ty ' T)(—1, 0])

o o =1 o —
34. Let T: R” — R™ be a linear transformation 8. (Lo (e T = TY(-1, 0, 1])

and let U be a subspace of R™. Prove that 39. Work with Topic 4 of the LINTEK routine
the inverse image T~'[U] is a subspace of R”. VECTGRPH until you can consistently
achieve a score of at least 80%.
In Exercises 35-38, let T, T, T,, and T, be 40. Work with Topic 5 of the LINTEK routine
linear transformations whose siandard matrix VECTGRPH until you can regularly attain a
representations are score of at least 82%.
2.4 LINEAR TRANSFORMATIONS OF THE PLANE (OPTIONAL)
I

From the preceding section, we know that every linear transformation
T: R* - R?is given by T(x) = T,(x) = Ax, where 4 is some 2 X 2 matrix.
Different 2 X 2 matrices 4 give different transformations because 7'(e,) = 4e,
is the first column vector of 4 and T'(e,) = Ae, 1s the second columii vector. The
entire plane is mapped onto the column space of the matrix 4. In this section
we discuss these linear transformations of the plane R? into itself, where we can -
draw reasonable pictures. We will use the familiar x,y-notation for coordinates
in the plane.

The Collapsing (Noninvertible) Transformations

Fora 2 X 2 matrix A to be noninveriible, it must have rank 0 or 1. If rank(4) =
0, then 4 is the zero matrix

<

—
o
==

o<
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and we have A(v) = 0 for all v € R. Geometrically, the entire plane is collapsed
to a single point-—the origin.

If rank(4) = 1, then the column space of 4, which is the range o 7,15 a
one-dimensional subspace of R?, which is a line through the origin. The matrix
A contains at least one nonzero column vector; if both column vectors are

nonzero, then the second one is a scalar multiple of the first one. Examples of
such matrices are

10 0 0] -1 O-I 1 -3 S ()
00p 01p 1 Oj’ 2 ~6|

Projection  Projection Collapse Collapse

on x-axis ony-axis ontoy=-x ontoy=2x

The first two of these matrices produce projections on the coordinate axes, as
labeled. Projection of the plane on a line 7. through the origin maps each vector
v onto a vector p represented geometrically by the arrow starting at the origin
and having its tip at the point on L that is closest to the tip of v. The line
through the tips of v and p must be perpendicuiar to the line L; phrased
entirely in terms of vectors, the vector v — p must be orthogonal to p. This is
illustrated in Figure 2.6. Projection on the x-axis is illustrated in Figure 2.7; we

(5] =[z]-1o o)

in accord with our labeling of the first matrix in (1). Similarly, the second
matrix in (1) gives projection on the y-axis. We refer to such matrices as
projection matrices. The third and fourth matrices map the plane onto the
indicated lines, as we readily see by examination of their column vectors. The
transformations represented by these matrices are not projections onto those
lines, however. Note that when projecting onto a line, every vector along the

L
FIGURE 2.6 FIGURE 2.7
Projection onto the line L. Projection onto the x-axis.
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AN

line is left fixed—that is, it is carried into itself. Now [3, —3] is a vector along

the line y = ~x, but
~1 0] 3] _[-3 3
RE BRI

which shows that the third matrix in (1) is not a projection matrix. A similar
computation shows that the final matrix in (1) is not a projecticn matrix. (See
Exercise 1.) Chapter 6 discusses larger projection matrices.

Invertible Linear Transformations of the Plane

We know that if T,: R? — R? given by T,(x) = 4x is an invertible linear
transformation of the plane into iiself, then 4 is an invertible 2 X 2 matrix so
that Ax = b has a solution for every b € R Thus the range of 7, is all of R%. 1

Among the invertible linear transformations of the plane are the rigid -
motions cf the plare that carry the origin into itself. Rotation of the piane 3
about the origin counterclockwise through an angle 0, as illustrated in Figure -3
2.8, is an example of such a rigid motion. E

i

Explain geometrically why T: B2 — R2, which rotates the plane counterclock- -
wise through an angle 4, is a linear transformation, and find its standar
matrix representation. An algebraic proof is outlined in Exercise 23.

We must show that for all u, v, w € R? and all scalars r, we have T(u + )
T(u) + T(v)and T(rw) = rT{w). Figure 2.8(a) indicates that the parallelogram
that defines u + v is carried into the parallelogram defining T'(u) + T'{v) by
and Figure 2.8(b) similarly shows the lines illustrating rw and 7'(rw). Thus
preserves addition and scalar multiplication. Figure 2.9 indicates that

T(e,) = [cos 6, sin §] and Tle,) = [~sin 6, cos 6].

y

‘r fT(rw)

(@ Tu+v)y=T@w + 7(v) (b) T(rw) = rT(w)

FIGURE 2.8
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Yy
4
T(ep A
]
i
! T(ey)
cos & m !
! | >sin 6
b 6 =) G
sin 6 cos & i
FIGURE 2.9

Counterclockwise rotation of e, and e,
through the angle 6.

Thus
Counterclockwise rotation thrcugh 6 2)

cos § —sin 6
sin 8 cos 6|

is the standard matrix representation of this transformation. =

Another type of rigid motion T of the plane consists of “turning the plane
over” around a line L through the origin. Turn the plane by holding the ends of
the line L and rotating 180°, as you might hold a pencil by the ends with the
“Ne. 2” designation on iop and rotate it 180° so that the “No. 2” is on the
underside. In analogy with the rotation in Figure 2.8, the parallelogram
defining u + v is carried into one defining 7'(u) + T'(v), and similarly for the
arrows defining the scalar product rw. This type of rigid motion of the plane is
called a reflection in the line L, because if we think of holding a mirror
perpendicular to the plane with its bottom edge falling on L, then 7(¥) is the
reflection of v in this mirror, as indicated in Figure 2.10. Every vector w along
Liscarried into itself. As indicatcd in Figure 2.11, the reflection T of the plane

y -
A [x, ¥
|
—O > x
0 ;
}
T([x, y]) = [x, —y]
FIGURE 2.10 FIGURE 2.11
Reflection in the line L. Reflectior in the x-axis.
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in the x-axis is defined oy T([x, y]) = [x, —)]. Because e, is left fixed and e, is
carried into —e,, we see that the standard matrix representation of this
reflection in the x-axis is :

(10

0 _J. Reflection in the x-axis 3)

It can be shown that the rigid motions of the plane carrying the origin into
itself are precisely the linear transformations T: R? — R? that preserve lengths
of all vectors in R?—that is, such that || T'(x)|| = ||x|| for all x € R%. We will
discuss such ideas further in Exercises 17-22.

Thinking for a moment, we can see that every rigid motion of the plane
leaving the origin fixed is either a rotation or a reflection followed by a
rotation. Namely, if the plane is not turned over, all we can do is rotate it about
the origin. If the plane has been turned over, we can achieve its final position
by reflection in the x-axis, turning it over horizontally, followed by a rotation
about the origir io obtain the desired position. We will use this last fact in the
second solution of the next example. (Actually, every rigid motion leaving the
origin fixed and turning the plane over is a reflection in some line through the
origin, although this is not quite as easy to see.) The first solution of the next
example illustrates tiat bases for R? other than the standard basis can be
useful.

Find the standard matrix representation A4 for the reflection of the plane in the
liney = 2x.

Let b, = [1, 2], which lies along the line vy = 2x, and let b, = [~2, 1], which is
orthogonal to b, because b, * b, = 0. These vectors are shown in Figure 2.12. If
T: R? — R? s reflection in the line y = 2x, then we have

T(b)=b, and T(b) = —b,

y=2x

by = [1,2]= T(by)

FIGURE 2.12
Reflection in the line y = 2x.
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Now {b,, by} is a basis for R%, and Theorem 2.7 teils us that T is completely
determined by its action on this basis. To find T'(e,) and T(e,) for the column
vectors in the standard matrix representation 4 of T, we first express e, and e,
as linear combinations of b, and b,. To do this, we solve the two linear systems
with e, and e, as column vectors of constants and b, and b, as columns of the
coefficient matrix, as follows:

{1 =211 0] {1 -2 10~10

2 110 1 0 5(-2 1 0 1
Thus we have

1 2 2 1

gbl - '5-b2 and e, = gbl + —S-bz.

Applying the transformation T to both sides of these equations, we obtain

rnle— Ll
—

e =

T) = 3T0) ~ 270) = b, + 2o, = 21+ J-2, 1= L 3 %]

and

2 1., 2 1 2
T(e) = $71b) + 769 = 3o, ~ b, = 211,20 - f-2.11= 4
Thus the standard matrix representation is

The three parts of Figure 2.13 show that we can attain the reflection of the
plane in the line y = 2x as follows: First reflect in the x-axis, taking us from
part (a) to part (b) of the figure, and then rotate counterclockwise through the
angle 26, where 8 is the angle from the x-axis to the line y = 2x, measured
counterclockwise. Using the double angle formulas derived in Section 2.3, we
see from the right triangle in Figure 2.13(a) that

43
55

il v
Wil

2 1
sin 28 = 2 sinf cosf = 2(‘%)(—\7—3) = %
and

. 1 4 3
= 20 — 2= = — — = —=
cos 26 = cos*@ — sin’f 573 5

Replacing 6 by 26 in the matrix in Example 1, we see that the standard matrix
representation for rotation through the angle 26 is

@

| m—
|
wih w»iw
|
Wl LAl
T
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FIGURE 2.13
(a) The vector v (b) Reflected (c) Rotated

Multiplying matrices (4) and (3), we obtain
=5 -

Rotate Reflect

(
3
5
4
5

Lalw wip.
wild o
L s

In Example 2, note that because we first reflect in the x-axis and then rotate
through 26, the matrix for the reflection is the one on the right, which acts on a
vector v € R? first when computing Av.*

A Geometric Description of All Invertible Transformations
of the Plane

We exploit matrix techniques to describe geometrically all invertible linear .
transformations of the piane inio itself. Recali that every invertibie matrix is a
product of elementary matrices. If we can interpret geometrically the effect on
the plane of the linear transformations having elementary 2 X 2 matrices as
their standard representations, we will gain insight into all invertible linear
transformations of R? into R2.

*This right-to-left order for composite transformations occurs because we write functions on the
left of the elements of the domain on which they act, writing f{x) rather than (x)f. From a
pedagogical standpoint, writing functions on the left must be regarded as a peculiarity in the
development of mathematical notations in a seciety where text is read from left to right. If we
wrote functions on the right side, then we would take the transpose of 4x and write

X747 = x7[reflection matrix]?[rotation matrix]7,

cxcept that we would of course have developed things in terms of row vectors so that Lie trunspose
notation would not appear as it does here.
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Describe geometrically the effect on the plane of the linear transformation 7
where E is an elementary matrix obtained by multiplying a row of the 2 x 2
identity matrix / by —1.

The matrix obtained by multiplying the second row of I by —1 is

[t o
e=lo -1}
which is the matrix given as matrix (3). We saw there that T is the reflection in
the x-axis and Tg([x, y]) = [x, —y]. Similarly, we see that the elementary
matrix obtained by multiplying the first row of J by —1 represents the

transformation that changes the sign of the first component of a vector,
carrying [x, y] into [—Xx, y]. This is the reflection in the y-axis. w

Describe geometrically the effect on the plane of the linear transformation 75
where F is an elementary matrix obtained by interchanging the rows of the
2 X 2 identity matrix I.

= [ JE1-1)

In row-vector notation, we have T3([x, y]) = [y, x]. Figure 2.14 indicates that
this transformation, which interchanges the components of a vector in the
plane, is the reflection in the line y = x. =

Here we have

Describe geometrically the linear transformation I‘(BD = E[ﬂ, where Eis a

2 X 2 elementary matrix corresponding to row scaling.

51 o oY

The matrix E has the form

L bl == -

FIGURE 2.14
Reflection in the line y = x.
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for sume nonzero scalar r. We discuss the first case and leave the second as
Exercise 8. The transformation is given by

x] r 0] [x] _ [rx
T ) - [ [ - [ ]
(L'J o 1)1y "Ly
or, in row notation, T([x, y]) = [rx, y). The second component of [x, y] is
unchanged. However, the first component is multiplied by the scalar r,
resulting in a horizontal expansion if r > 1 or in a horizontal contraction if
0 <r< 1. In Figure 2.15, we illustrate the effect of such a horizontal expansion

or contraction on the points of the unit circle. If r <0, we have an expansion or
contraction followed by a reflection in the y-axis. For example,

=20} _[-10 P 0
0 IJ 0110 1p
Reflection Horizontal expansion
indicating a horizontal expansion by a factor of 3, followed by a reflection in
the y-axis. =
Describe geometrically the linear transformation T(BD =E [;], where Eis a

2 x 2 eiementary matrix corresponding to row addition.

10 1 r

rl 01
for some nonzero scalar r. We discuss the first case, and leave the second as
Exercise 10. The transformation is given by

)= G-1)

or, in row-vector notation, T'([x, y]) and [x, rx + y]. The first component of the
vector [x, y] is unchanged. However, the second component is changed by the

The matrix £ has the form

FIGURE 2.15

1
E)T(x. ¥yl = [gx, y} contracts horizontally; (b) T([x. y]) = [3x, ¥] expands horizontally.

iy
-

S gt i) oz hindes ¥ 41
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addition of rx. For example, [1, O] is carried onfo [1, 7], and [1, 1] 1s carried
onto [1, I + r], while [0, 0] and [0, 1] are carried onto themselves: Notice that
every vector along the y-axis remains fixed. Figure 2.16 illustrates the effect of
this transformation. The squares shaded in black are carried onto the
parallelograms shaded in color. This transformation is called a vertical shear.
Exercise 10 deals with the case of a horizontal shear. =

We have noted that a square matrix A4 is invertible if and only if it is the
product of elementary matrices. We also know that a product of matrices
corresponds to the composition of the associated linear transformations, and
we have seen the effect of transformations associated with elementary matrices
on the plane. Putting all of these ideas together, we obtain the following.

Geometric Description of Invertible Transformations of R?
A linear transformation T of the plane R? into itself is invertible if
and only if T consists of a finite sequence of:

Reflections in the x-axis, the y-axis, or the line y = x;
Vertical or horizontal expansions or contractions; and
Vertical or hoiizontal shears.

(a) (b)

FIGURE 2.16
(a) The verticai shear T([x, y) = [x, rx + yL. r> 0
(b) the vertical shear T{{x, yD =[x, rx + ¥}, r <0
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illustrate the result relating to the boxed description above for the invertible
linear transformation 7([x, y]) = [x + 2y, 3x + 4y].

We reduce the standard matrix representation 4 of T, obtaining
_ E, E, E,
_(t2 12 _ 12 _ 10
Sl H A U
R—R, - 3k, Rl—->—%RZ R—R, - 2R,

In terms of elementary matrices, this reduction becomes

B

2
E, E, E,

1oL ][I 2
= F- el Bl o=
4= E' B Es {3 1] {0 —2} [0 1}

This shows that T consists of a horizontal shear (matrix E,7") followed by an
expansion and reflection (matrix E,™), followed in turn by a vertical shear
(matrix E,7'). =

and so

-SUMMARY

1. Linear transformations of R? into R? whose standard matrix representa-
tions have rank less than 2 either collapse the entire plane te the origin (the
rank 0 case) or collapse the plane to a line {the rank 1 case).

2. A rigid motion of the plane into itself that leaves the origin fixed gives a *
linear transformation 7: R* — RZ Every such rigid motion is either a :
rotation of the plane about the origin, or a reflection in the x-axis (to turn
the plane over) followed by such a rotation.

3. The standard matrix representation for the rotation of the plane counter-
clockwise about the origin through an angle 8 is

cos § —sin 6
sin 8 cos 8

4. An invertibie lincar transformation of R? into itself can be described 3
geometrically, using clementary matrices, as indicated in the box preced- 4
ing Example 7.
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EXERCISES

. Explain why the lincar transformation
7. R —> R2, where 4 = [; <g], has the line

y = 2x as range, but is not the projection
of R? onto that line.

. Give the standard matrix representation of
the rotation of the plane counterclockwise
about the origin through an angle of
a. 30°
b. 90°,

c. 135%

. Give the standard matrix representation of
the rotation of the plane clockwise about the
origin through an angle of
a. 45°
b. 60°,

c. 150°

Use the rotation matrix in item 3 of the
Summary to derive trigonometric identities
for sin 36 and cos 36 in terms of sin 6 and
cos 0. (See Illustration 1, Section 2.3.)

. Use the rotation matrix in item 3 of the
Summary to derive trigonometric identities
for sin(8 + ¢) and cos (6 + @) in terms of
sin 6, sin ¢, cos 6, and cos ¢. (See
Hlustration 1, Section 2.3.)

. Find the general matrix representation for
the reflection of the plane in the line y =
mx, using the method for the case m = 2 in
Solution 1 of Example 2 in the text.

. Repeat Exercise 6, but use the method for
the case m = Z in Solution 2 of Example 2
in the text.

‘8. Show that the linear transformation

T( b ) - 1 0] x

y 0 rily
affects the plane R? as follows: _
(1) A vertical expansion, if r > 1;

(i1) A vertical contraction, if 0 < r < 1;
(1ii) A vertical expansion followed by a
reflection in the x-axis, if r < —1;

(iv) A vertical contraction followed by a
reflection in the x-axis. if =1 <r <0,

9.

10.

Referring to Exercise 8, explain algebraically
why cases (iii) and (iv) can be described by
the reflection followed: by the expansion or
contraction, in that order.

Show that the linear trausformation

T( X ) - 1 r]ix
oo gy
corresponds to a horizontal shear of the
plane.

In Exercises 11-15, express the standard matrix
representation of the given invertible
transformation of R? into itself as a product of
elementary matrices. Use this expression to
describe the transformation as a product of one or
more reflections, horizontal or vertical expansions
or contractions, and shears.

11.

12.

13.

14.
15.
16.

— a.

T([x, y}) = [-», 7] (Rotation
counterclockwise through 90°)

T([x, ¥]) = [2x, 2y] (Expansion away from
the origin by a factor of 2)

T([x, y]) = [-x, —~y] (Rotation through
180°) : :

I(x, y)) = [x + y, 2x = )]

T(lx, y]) =[x + 3, 3x + 5]

Mark each of the following True or False.

Every rotation of the plane is a linear

transformation.

Every rotation of the plane about the

origin is a linear transformation.

Every reflection of the plane in a line L is

a rigid motion of the plane.

. Every reflection of the plane in a line L is
a linear transformation of the plane.

. Every rigid motion of the plane that

carries the origin into itself is a linear

transformation.

Every invertible linear transformation of

the plane is a rigid motion.

. If a linear transformation T: R? — R®is a

rigid motion of the plane, then

T = [Ix|] for all x € R
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— h. The geometric effect of all invertible
linear transformations of R® into itself
can be described in terms of the
geometric effect of the linear
transformations of R® having elementary
matrices as standard matrix
representations. )

- Every linear transformation of the plane
ints itself can be achieved through a
succession of reflections, expansions,
contractions, and shears.

. Every invertible linear transformation of
the plane into itself can be achieved
through a succession of reflections,
expansions, contractions, and shears.

A linear transformation T R? — R?
preserves length if (|T(x)|| = ||x|| for all

x € R It preserves angle if the angle
between u and v is the same as the angle
petween T(u)and T(v) for aliu, v € R% It
preserves the dot product if T'(u) - 7(v) =
u-vforaluveR?

We recommend that Exercises 17-22 be worked
sequentially, or at least be read sequentially.

17. Use the familiar equation that describes the
dot product u - v geometrically to prove that
if a linear transformation T': R? — R?
preserves both length and angle, then it also
preserves the dot product.

18. Use algebraic properties of the dot product
to compute {Ju — v|* = (u — v} - (u — v), and
prove from the resulting equaticn that a
linear transformation T: R? — R? that
preserves length also preserves the dot
product.

DIMENSION, RANK, AND LINEAR TRANSFORMATIONS

19.

20.

21.

22

23.

Express both the length of a vector v € R?
and the angle between two nonzero vectors F
u, v € R? in terms of the dot product only. '
(From this we may conclude that if a linear
transformation T: R? — R? preserves the dot
product, then it preserves length and angle.)

Suppose that 7,: R? — R? preserves both
length and angle. Prove that the two column
vectors of the matrix 4 are orthogonal unit
vectors. 4

Prove that the two column vectors of a :
2 X 2 matrix 4 are orthogonal unit vectors if
and only if (47)4 = I. Demonstrate that the
matrix representations for the rigid motions
given in Examples | and 2 satisfy this
condition. :
Let 4 be a2 X 2 matrix such that (47)4 = I.
Prove that the linear transformation T, ]
preserves the dot product, and hence also ;
preserves length and angle. [HiNT: Note that .3
the dot product of iwo column vectors
u, v € R"is the entry in the 1 X | matrix 3
(uT)v. Compute the dot product T(u) - T(v) 8
by computing (Au)7(4v).] g
This exercise outlines an algebraic proof that J§
rotation of the plane about the origin isa
linear transformation. Let T: R? — R? be the
function that rotates the plane
counterclockwise through an angle 8 as in
Example 1. .
a. Prove algebraically that each vector
v € R? can be written in the polar form
v = r[cos e, sin a]. [HINT: Each unit
vector has this form with r = 1.
b. For v = r[cos o, sin o], express T(v) in
this polar form.
¢. Using column-vector notation and
appropriate trigonometric identities, find
a matrix A such that T(v) = Av. The
existence of such a matrix 4 proves that ‘S
T is a linear transformation.
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LINES, PLANES, AND OTHER FLATS (Optional)

We turn to geometry in this section, and generalize the notions of a line in the
plane or in space and of a plane in space. Our work in the preceding sections
will enable us to describe geometrically the solution set of any consistent linear
system.

The Notion of a Line in R”

For a nonzero vector d in R?, we visualize the one-dimensional subspace sp(d)
as a line through the origin, as shown in Figure 2.17. Similarly, Figure 2.18
indicates that for a nonzero vector d in R”, we can view sp(d) = {td | € R}asa
line throngh the origin. Every subspace of R” contains the origin (zero vector),
but we surely want to consider lines in R" that do not pass through the origin,
such as line L in Figure 2.19. As indicated in Figure 2.19, if a is a vector to a
point on the line L, then every point on L is at the tip of a vector x = #d + a,
where ¢ is a scalar and d is any fixed nonzero vector that we regard intuitively as
parallel to the line L. This line is thus obtained from the line sp(d) by
translation. Geometers consider a translation of a subset S of R” to be a sliding
of every point in S in the same direction and for the same distance. The
direction and distance for a transiation can be specified by a vector (such as
vector a above) pointing in the direction of the translation and having
magnitude equal to the distance the points are moved. The image of .S under
such a translation is a translate of S. We will give a formal definition of a
translate of a subset, present an example, and then define a line in R”.

DEFINITION 2.4 Translate of a Subset of R"

r.Theset{x +a|xE S}
he vectorais the

Ap@ /S o)

» X

FIGURE 2.17 FIGURE 2.18
A line through the origin in R2. A line through the origin in R".
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FIGURE 2.19 FIGURE 2.20
A general line L in R". Transtate of {x € R? | ||x|| = 2} in R?
-by {3, ~-4].

Sketch the translate of the subset S = {x € R? | ||x|| = 2} of R? by the vector
(3, —4].

The subset .S of R?is a disk with center at the origin and a radius of 2. As shown
in Figure 2.20, its translate by [3, —~4] is the disk with center at the point
(3, —4)and aradius of 2. =

DEFINITION 2.5 Linein R

A line in R is a translate of a one-dimensional subspace of R".

Although our definition defines a line to be a set of vectors, it is customary
in geometry to consider a line as the set of points in R" whose coordinates
correspond to the components of the vectors. .

We can specify a line L in R" by giving a point {2, a,, . . . , @,) on the line
and a vector d parallel to the line. We consider d to be a direction vector for the
line, whereas a is a translation vector. In the terminology of Definition 2.5, L is
the translate of the subspace sp(d) by the vector a = [a,, a,, . . . , a,]—that is,
L ={1d + a| ¢ € R}. We can describe the line by the single equation

x =td +a Vector equation of L
or by the equations

x, =, + q
iy, + ay

‘\
S
Il

Component equations of L
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In classical geometry, component equations for L are also called parametric
equations for L, and the variable ¢ is a parameter. Of course, this same
parameter f appears in the vector equation also.

Find a vector equation and component equations for the line in R? through
(2, 1) having direction vector [3, 4]. Then find the point on the line having —4
as its x,-coordinate. .

The line can be characterized as the translate of sp([3, 4]) by the vector [2, 1],
and so a vector equation of the line is

{x, x] = 13, 4] + [2, 1].
The component equations are
x=3%+2, x,=4+1
Because ¢ runs through all real numbers, we obtain all points {x,, x,) on the line
from these component equations. In order to find the point on the line with —4

as x,-coordinate, we set —4 = 3¢ + 2 and obtain { = —-2. Thus the x,-coordinate
is 4(—=2) + 1 = —7, and so the desired point is (—4, -7). =

Find parametric equations of the line in R® that passes through the points
(2,-1,3)and (1, 3, 5).

We arbitrarily choose a = [2, — 1, 3] as the translation vector corresponding to
the point (2, —1, 3) on the line. A direction vector is given by

d=1[135]~-1[2-1,3]=[-142]
as indicated in Figure 2.21. We obtain
[x), X, X5] = t[—1,4,2] +[2, -1, 3]

as a vector equation for the line. The corresponding parametric (component)
equations are

X =—t+2, x, =4 - 1, X, =20+ 3. u
X3
Translated dT Y(13/5)

FIGURE 2.21
The line passing through {2, —1, 3) and (1, 3, 5).
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Line Segments

Consider the line in R" that passes through the two points (a,, 4, . . . , a,) and
(b, by, . . ., b,). Letting 2 and b be the vectors corresponding to these points,
we sec as in Example 3 tiiet d = b ~ a is a direciion vector for the line. The
vector equation

x=td+a=fb—-a)+a ' 1)

for the line in effect presents the line as a t-axis whose origin is at the point
(a;, @y, . . ., a,) and on which a one-unit change in ¢ corresponds to ||d|| units
distance in R", This is illustrated in Figure 2.22.

As illustrated in Figure 2.23, each point in R” on the line segment that
joins the tip of a to the tip of b lies at the tip of a vector x obtained in Eq. (1) for
some valve of £ for wiich € = r < 1. Note that £ = 0 yields the point at the tip of
a and { = | yields the point at the tip of b. By choosing ¢ between 0 and 1
appropriately, we can find the coordinates of any point on this line segment. In
particular, the coordinates of the midpoint of thc line segment are ihe
components of the vector

a+ (b= a)=3a  b)

Find the points that divide into five equal parts the line segment that ioins
(1,2,1,3)t0 (2, 1, 4, 2) in R".
We obtaind = [2,1,4,2] - [1,2,1,3] =[], 1, 3, —1] asa direction vector for
the line through the two given points. The corresponding vector equation of
the line is

x5 X% X5, X,] = A1, -1, 3, 1] +[1, 2, 1, 3].
By choosing £ = 0, 1, 2,2 4 and 1, we obtain coordinates of the points that

J 1P S '5:’ .
divide the segment as required, as shown in Table 2.1. =

FIGURE 2.22 FIGURE 2.23
Equation (1) sets up a t-axis. Points on a line segment.



25 LINES, PLANES, AND OTHER FLATS (OPTIONAL) 171

TABLE 2.1
t Equally Spaced Points

0 (1,2, 1,3)

% (12,18, 1.6,2.8)

% (1.4, 1.6, 2.2, 2.6) ’
% (1.6,1.4,2.8,2.4)

% (1.8, 1.2, 3.4,2.2)

1 (2,1,4,2)

Flats in R"

Just as a line is a translate of a one-dimensional subspace in R", a plane in R" is
a translate of a iwo-dimensional subspace sp(d,, d,), where d, and d, are
nonzero, nonparallel vectors in R”. A plane appears as a flat piece of R?, as
illustrated in Figure 2.24. We have no word analogous to “straight” or ““flat” in
our language to denote that R? is not “curved.” We borrow the term “flat”
when generalizing to higher dimensions, and describe a translate of a
k-dimensional subspace of R” for k < n as being “flat.”” Let us give a formal
definition.

DEFINITION 2.6 A k-Flatin R
‘k-dimensional subspace of R”. In

lane, and an (n — 1)-flat isa
‘be azeroflat.

2-flat through
the origin

FIGURE 2.24
Planes or 2-flats in R"
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EXAMPLE S

SOLUTION

DIMENSION, RANK, AND LINEAR TRANSFORMATIONS

Just as for a line, it is conventional in geometr; to speak of the translate
W + a of a k-dimensional subspace W of R" as the k-flai through the point
(a, a, ..., a,)parallel to W.1f{d,, d,, . . ., d,;} is a basis for W, then

x=td +td,+- - +1d, +a 03]

is the vector equation of the k-flat. (We use the letter d because W determines
the direction of the k-flat as being parallel to W.) The corresponding
component equations are again called parametric equations for the k-flat.

Find parametric equations of the plane in R* passing through the points
(1,1,1,1), (2, 1, 1, 0), and (3, 2, 1, 0).

We arbitrarily choose 2 = [1, 1, 1, 1] as the translation vector corresponding to
the point (1, 1, 1, 1) on the desired planc. Two vectors that (when translated)
start at this point and reach to the other two points are

d=12110-[1,1,11=[1,0,0, —-1]
and
d'). = [33 27 13 0] - [la 15 1: 1] = [2, 170’ —1]'

Because these vectors are nonparallel, they form a basis for the 2-flat through
the origin and parallel to the desired plane. See Figure 2.25. The vector
equation of the plane is x = sd, + td, + a, or, written out,

[x,, X5 X35, xg] = 8[1,0,0, —=1] + {2, 1,0, ~1] + [1, 1, 1, 1].

HISTORICAL NOTE THE EQUATION OF A PLANE IN R? appears as early as 1732 in a paper of Jacob
Hermann (1678~1733). He was able to determine the plane’s position by using intercepts, and he
also noted that the sine of the angle between the plane and the one coordinate plane he dealt with

(what we call the x,, x;-plane) was
N /dll + dIZ

Vd? + d} + d?
In his 1748 Introduction to Infinitesimal Analysis, Leonhard Euler (1707-1783) used, instead. the
cosine of this angle, d/\/d + 4, + d;*.

At the end of the eighteenth century, Gaspard Monge (1746~1818), in his notes for a course
on solid analytic geometry at the Ecole Polytechnique, related the equation of a plane to all three
coordinate planes and gave the cosines of the angles the plane made with each of these (the
so-called direction cosines). He also presented many of the standard problems of solid analytic
geometry, examples of which appear in the exercises. For instance, he showed how to find the
plane passing through three given points, the line passing through a point perpendicular to a plane,
the distance between two parallel planes, and the angie between a line and a plane.

Known as “the greatest geometer of the eighteenth century,” Monge developed new graphical
geometric techniques as a student and later as a professor at a military school. The first problem he
solved had to do with a procedure enabling soldiers to mzke quickly a fortification capable of
shielding a position from both the view and the firepower of the enemy. Monge served the French
revolutionary government as mnister of the navy and later served Napoleon in various scientific
offices. Ultimately, he was appointed senator for life by the emperor.
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2,1,1,0) (3.2,1,0)

1
e

-t
translated d,
~ translated d,

(LLLD

FIGURE 2.25
A 2-flat in R

Parametric equations obtained by equating components are

X = s+2t+1

X, = t+1
Xy = 1
X, =-s— t+1 .

The Geometry of Linear Systems

Let Ax = b be any system of m equations in 7 unknowns that has at least one
solution x = p. Theorem 1.18 on p. 97 shows that the solution set of the system
consists of all vectors of ihe furiit X = p + h, where h is a solution: of the
homogeneous system Ax = 0. Because the solution set of Ax = 0 is a subspace
of R", we see that the solution set of Ax = b is the translate of this subspace by
the vector p. That is, the solution set of Ax = b is a k-flat, where k is the nullity
of 4. If the system of equations has a unique solution, its solution set is a
zero-flat. -

Show that the linear equation ¢,.x, + ¢,x, + C3x; = b, where at least one of
¢y, €, € 1S nonzero, represents a plane in R,

Let us assume that ¢, # 0. A particular solution of the given equation is
a = [b/c,, 0,0]. The corresponding homogeneous equation has a solution space
generated by d, = [¢;, 0, —¢;] and d, = [¢,, —c,, 0]. Thus the solution set of the
linear equation is a 2-flat in R’ with equation x = sd, + d, + a—that is, a
plane in R*. =
Reasoning as in Example 6, we see that every linear equation
cxy tox,+ o +ex,=b

represents a hyperplane—that is, an (n — 1)-flat in R

g
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EXAMPLE 7

SOLUTION

DIMENSION, RANK, AND LINEAR TRANSFORMATIONS
Solve the system of equations
X+ 2x, = 2+ Xy + 3x5 =
2%+ 5%y = 3x, — x, + 2x5 =
=3x, = 8x, + 6x; — x, — 3x;, = 1,

|
—_ N —

and write the solution set as a k-flat.
Reducing the corresponding partitioned matrix, we have

1 2-=2 1 31 [t 2-2 1 3]1
2 53— 2|2(~l0 1 1 -3 -4 |0
-3 -8 6~-1 =51 [0-2 0 2 4 |4

(1 0—-4 7 11 ]i] [1 0 0 -1 3 9

0 1 1 -3-410/~0 1 0 -1 -2 1=2].

[002444{001—2—2|2
-2,

Thus, a = [9, 2, 0, 0] is a particular solution to the given system, and
d, =1, 1,2,1,0]and d;, = [-3, 2, 2, 0, 1] form a bas:s for the solution space of
the corresponding homogeneous system. The solution set of the given system
is the 2-flat in R® with vector equation x = a + £,d, + £,d,, which can be written
in the form

X 9 1 -3
X, -2 1 2
X =] 21+ 4|2+ t| 2
Xs 0 1 0
Xs 0 0 1 =

In the preceding example, we described the solution set of a system of
equations as a 2-flat in R’. Notice that the original form of the system
represents an intersection of three hyperplanes in R>—one for each equation.
We generalize this example to the solution set of any consistent linear system.

Consider a system of m equations in # unknowns. Let the rank of the
coefficient matrix be r so that, when the matrix is reduced to row-echelon
form, there are r nonzero rows. According to the rank equation, the number of
free variables is then n — r; the corresponding homogeneous system has as its
solution set an (7 - /}-dimensional subspace—that is, an (n — r)-flat through
the origin. The solution set of the original nonhomogeneous system is a
translate of this subspace and is an (n ~ r)-flat in R". In particular, a single
consistent linear equation has as its solution set an (n — 1)-flat in R". In
general, if we adjoin an additional linear equation to a given linear system, we
expect the dimension of the solution flat to be reduced by 1. This is the case
precisely when the new system is still consistent and when the new equation is
independent of the others (in the sense that it yields a new nonzero row when
the augmented matrix is row-reduced to echelon form).

We have shown that a system +{x = b of m equations in » unknowns has as
1ts solution set an (n — r)-flat, where r is the rank of 4. Conversely, it can be
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SUMMARY
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shown that a k-flat in R" is the solution set of some system of n — K linear
equations in # unknowns. That is, ¢ k-flat in R" is the intersection of n — k
hyperplanes. Thus there are two ways to view a k-flat in R™

I. As a translate of a k-dimensional subspace of R", described using
parametric equations

2. As an intersection of n — k hyperplanes, described with a system of
linear equations.

Describe the line (1-flat) in R? that passes through (2, —1, 3) and (1, 3, 5) in
terms of :

(1) parametric equations, and

(2) a system of linear equations.

(1) In Example 3, we found the parametric equations for the line:
X, =—t+2, X, =4t-1, x3=2t+3. 3

(2) In order to describe the line with a system of linear equations, we eliminate :
the parameter ¢ from Egs. (3): ‘

4x, + x, = 7 Add four times the first to the second. )
X, — 2x; = —7 Subtract twice the third from the second. i

This system describes the line as an intersection of two planes. The line can be
represented as the intersection of any two distinct planes, each containing the
line. This is illustrated by the equivalent systems we have at the various stages

FRalY =

in the Gauss reduction of system (4) to obtain solution (3). =

1. Thetranslate of a subset S of R" by a vector a € R"is the set of all vectors in
R" of the form x + a for x € S, and is denoted by § + a.

2. A k-flat in R" is a transiate of a k-dimensional subspace and has the form

a+ sp(d,, d,,...,d,), where a is a vector in R" and d, d,, . . . , d, are
independent vectors in R". The vector equation of the «-flat is x = a +
id, + 6d, + - -+ + 1,4, for scalars ¢, in R.

3. Aline in R"is a 1-flat. The line passing through the point a with parallel
vector d is given by x = a + #d, where £runs through all scalars. Parametric
equations of the line are the component equations x; = a; + dit for
i=12,...,n

4. Letaand b be vectors in R". Vectors to points on the line segment from the
tip of a to the tip of b are vectors of the formx = (b —a)+afor0=¢= 1.

5. A plane in R is a 2-flat; a hyperplane in R" is an (n — 1)-flat.
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6. Thesolution set of a consistent linear system in # variables with coefficient
matrix of rank r is an (n — r)-flat in R".

7. Every k-flat in R" can be viewed both as a translate of a k-dimensional
subspace and a3 the intersection of n — k hyperplanes.

EXERC ISEi
Ir keeping with classical geometry, many of the 11. For each pair of points, find parametric
exercises that follow are phrased in terms of equations of the line containing them.
points rather than in terrs of vectors. a. {~2,4)and (3, -1)in R?
In Exercises 1-6, sketch the indicated b. (3, -1, 6)and (0, =3, ~1) in R®
translate of the subset of R™ in an appropriate ¢. (2,0,4)and (~1,5, -8)in R?
figure. ~ 12. For each of the giveu pairs of lines in R?,
determine whether the lines intersect. If they
o . do intersect, find the point of intersection,
1. The translate of the line x, = 2x; + 3 in R? and determine whether the lines are
by the vector [—3, 0] orthogonal.
2. The translate of {{t, 7} | ¢ € R} in R? by the a. x=4+1 x=2-31
vector [—1, —2] Xy = =3+ 5¢
3. The translate of (x € R? | |x| = 1 fori = 1,2} and
by the vector [1, 2] x,=11+3s, ,=-9— 4s,
4. The translate of {x € R? | ||x|| = 3} by the X; = —4 —3s
vector [2, 3] box= 1143, x=-3-1
5. The translate of {x € R* | ||x|| = 1} by the Xy =4+31
vector [2, 4, 3] and
6. The translate of the plane x; + x, = 2 in R? x=6-25, x;=-2+s3,
by the vector [—1, 2, 3] X;==15+17s
7. Give parametric equations for the line in R? 13. Find all points in common to the lines in R?
through (3, ~3) with direction vector givenby x; = 5~ 34 x,= —1 + tand
d = [~8, 4]. Sketch the line in an x,=-T+6s,x,=3-25.
appropriate figure. 14. Find parametric equations for the line in R?
8. Give parametric equations for the line in R? through (-1, 2, 3) that is orthogonal to each
through (-1, 3, 0) with direction vector of the two lines having parametric equations
d = [-2, -1, 4]. Sketch the line in an x=-2+3,x=4x;=1-tand
appropriate figure. x=T-6x=2+3,x;=4+1t
9. Consider the line in R? that is given by the 15. Find the midpoint of the line segment
equation dyx; + d,x, = ¢ for numbers d,, d,, joining each pair of points.
and c in R, where d, and d, are not both 2. (=2,4)and (3, ~1) in R?
zero. Find parametric equations of the line. b. (3,-1,6)and (0, -3, -1) in R’
10. Find parametric equations for the line in R? c. (0,4,8)and (-4,5,9)in R’
through {5, —1) and orthogonal to the line 16. Find the point in R? on the line segment
with parametric equations x, = 4 — 2, joining (—1, 3) and (2, 5) that is twice as

=T+ close 1o (= 1. 3) as to {2, 3).



. Find the point in R? on the line segment
joining (~2, 1, 3) and (0, -5, 6) that is
one-fourth of the way from (=2, 1, 3) to
(0, =5, 6).
. Find the points that divide the line segment
between (2, 1, 3, 4) and (-1, 2, 1, 3) in R*
into three équal parts.
. Find the midpoint of the line segment
between (2, 1, 3,4, 0)and (1, 2, ~1, 3, ~1)
in RS,
. Find the intersection in R’ of the line given
by

X, =5+

x=-=3t x=-2+4

and the plane with equation x, ~ 3x, + 2x,
-25.

. Find the intersection in R? of the line given
by

xl=2:

.x2=5_l, x;=2t

and the plane with equation x, + 2x; = 10.

. Find parametric equations of the plane that
passes through the unit coordinate points
(1,0,0)(0, 1, 0), and (0, 0, 1) in R,

. Find a single linear equation in three
variables whose solution set is the plane in
Exercise 22. [HINT: We suggest two general
methods of attack: (1) climinate the
parameters from your answer to Exercise 22,
or (2) solve an appropriate linear system.
Actually, this particular answer can be found
by inspection.] :

. Find parametric equations of the plane in R}
that passes through (1, 0, 0), (0, 1, —1), and
(1, 1, 1).

. Find a single linear equation in three
variables whose solution set is the plane in
Exercise 24. [See the hint for Exercise 23.]

. Find a vector equation of the plane that
passes through the points (1, 2, 1), (-1, 2, 3),
and (2, 1, 4) in R%.

. Find a single linear equation in three
variables whose solution set is the plane in
Exercise 26. [See the hint for Exercise 23.]

. Find a vector equation for the plane in R*

that passes through the points (1, 2, 1, 3),
(4, 1,2, 1),and (3, 1, 2, 0).

25
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Find a linear system with two equations
in four variables whose solution set is the
plane in Exercise 28. [See the hint for
Exercise 23.]

Find a vector equation of the hyperplane
that passes through the points (1, 2, 1, 2, 3),
0,1,2,1,3),(0,0,3,1,2),(0,0,0, 1, 4,
and (0, 0, 0, 0, 2) in RS

Find a single linear equation in five variables
whose solution set is the hyperplane in
Exercise 30. [See the hint for Exercise 23.]

Find a vector equation of the hyperplane in
R¢ through the endpoints of e, e,, . . . , &

Find a single linear equation in six variables
whose solution set is the hyperplane in
Exercise 32. [See the hint for Exercise 23.]

In Exercises 34-42, solve the given system of
linear equations and write the solution set as a

k-flat.
4. x,-2x,= 3
3, — x,=14
35. x,+2x - x3=-3
3, + T + 2x;= 1
4x, = 2x; + Xx;= -2
36. x, +4x, — 2x; 4
2%+ Tx, — x;= -2
x +3x+ x;=-6
37. x-3x+ x;=
3x,— 8x, + 2xy =
I - T+ x =
38 x, —3x+2x,—-x=38
3x, = Tx, +x,=0
39. x ~2x+ x, =6
2% = 5+ x;-3x =0
Ox;, — 3%, ~ x;—Tx,=4
40. x, +2x, -3+ x,=2
3x, + 6x; — 8x;— 2x, = 1
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41, x, —3x+ x3+2x,= 2
X — 2%+ 2x; Fdx, = —i
2x, = 8x, — X3 =
3x; — 9x, + 4x, =

42. 2x; = 5x, + X3 — 10x; + 15x; = 60

42. Mark each of the following True or False.

— a. The solution set of a linear equation in x,
axzxd X, can be regarded as a hyperplane in
R

—— b. Every line and hyperplane in R" intersect
in a single point.

—— c¢. The intersection of two distinct
hyperplanes in R’ is a line, if the
intersection is nonempty.

——d

N

—~ f

g

__h

_ L

—

The Euclidean space R has no physical
existence, but exists only in our minds.
The Euclidean spaces R, R?, and R® have
no physical existence, but exist only in
our minds.

The mathematical existence of Euclidean
5-space is as substantial as the
mathematicai existence of Euclidean
3-space.

Every plane in R" is a two-dimensional
subspace of R".

Every plane through the origin in R is a
two-dimensional subspace of R".

Every k-flat in R" contains the origin.
Every k-flat in R” is a translate of a
k-dimensionai subspace.

sizsod bt .
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VECTOR SPACES

For the sake of efficiency, mathematicians often study objects just in terms of
their mathematical structure, deeniphasizing such things as particular sym-
bols used, names of things, and applications. Any properties derived exclu-
sively from mathematical structure will hold for all objects having that"
structure. Organizing mathematics in this way avoids repeating the same
arguments in different contexts. Viewed from this perspective, linear algebra is
the study of all objects that have a vector-space structure, The Euclidean spaces
R" that we treated in Chapters 1 and 2 serve as our guide.

Section 3.1 defines the general notion of a vector space, motivated by the
familiar algebraic structure of the spaces R™. Our examples focus mainiy on
spaces other than R”, such as function spaces. Unlike the first two chapters in
our text, this chapter draws on calculus for many of its illustrations.

Section 3.2 explains how the linear-algebra terminology introduced in
Chapter 1 for R" carries over to a general vector space V. The definitions given
in Chapters 1 and 2 for linear combinations, spans, subspaces, bases,
dependent vectors, independent vectors, and dimension can be left mostly
unchanged, except for replacing “R™ by “a vector space V.” Indeed, with this
replacement, many of the theorems and proofs in Chapter i have word-for-
word validity for general vector spaces.

Section 3.3 shows that every finite-dimensional (real) vector space can be
coordinatized to become algebraically indistinguisizable from one of the spaces
R®. This coordinatization allows us to apply the matrix techniques developed
in Chapters 1 and 2 to any finite-dimensional vector space for such things as
determining whether vectors are independent or form a basis.

Linear transformations of one vector space into another are the topic of
Section 3.4. We will see that some of the basic operations of calculus, such as
differentiation, can be viewed as linear transformations.

To conclude the chapter, optional Section 3.5 describes how we try to
access such geometric notions as length and angle even in infinite-dimensional
vector spaces.

179
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3.1 VECTOR SPACES

]

The Vector-Space Operations

In each Euclidean space R", we know how to add two vectors and how to
perform scalar multiplication of a vector by a real number (scalar). These are
the two vector-space operations. The first requirement that a set ¥, whose
elements we will call “vectors,” must satisfy in order to be a vector space is
that it have two well-defined algebraic operations, each of which yields an
element of V—namely:

Addition of two elements of V/ ~ Vector addition
Multiplication of an element of ¥ by a scalar. ~ Scalar multiplication

For example, we know how to add the two functions x* and sin x, aud we know
how to muitiply them by a real number. We require that, whenever addition cr
scalar multiplication is performed with elements in V, the answers obtained lie 3
againin V. That is, we require that ¥V be closed under vector addition and closed 1
under scalar multiplication. This notion of closure under an operation is
familiar to us from Chapter 1.

Definition of a Vector Space

The definition of a vector space which follows incorporates the ideas we have ’
just discussed. It also requires that the vector addition and scalar multiplica-
tion satisfy the algebraic properties that hold in R*—namely, those listed in
Theorem 1.1.

DEFINITION 3 1 VectorSpace

An-associative law
A commutative law
0 as additive identity

—v as additive inverse of v
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Properties Involving Scalar Multiplication
SI r{v+w)y=rv+rw A distributive law
S2 (r+s)v=rv+sv A distributive law
S3 r(sv) = (rs)y An associative law

S4 lv=vy Preservation of scale

I a moment we will show that there is only one vector 0 in ¥ satisfying
condition A3; this vector is called the zero vector. Similarly, we will see that the
vector —v in condition A4 is uniquely determined by v; it is called the additive
inverse of v, and is usually read “minus v.”” We write v — w for v + (—w).

The adjective “real” in parentheses in the first line of Definition 3.1
signifies that it is sometimes necessary to allow the scalars to be complex
numbers, @ + bi where g, b € R and # = —1. Linear aigebra using complex
scalars is the topic of Chapter 9. There are several branches of mathematics in
which one does not gain full insight without using complex numbers, and
linear algebra is one of them. Unfortunately, pencil and paper computation
with complex numbers is cumbersome, and so it is customary in a first course
to work mostly with real scalars. Fortunately, many of the concepts of linear
algebra can be adequately explained in terms of real vector spaces.

Because our definition of a vector space was modeled on the algebraic
structure of the Euclidean spaces R" discussed in Chapter 1, we see that R"is a
vector space for each positive integer n. We now proceed to illustrate this
concept with other examples. '

HISTORICAL NOTE ALTHOUGH THE OBJECTS WE CALL YECTOR SPACES were well known in the late
nineteenth century, the first mathematician to give an abstract definition of a vector space was
Giuseppe Peano (1858-1932) in his Calcolo Geometrico of 1888. Peano’s aim in the book, as the
title indicates, was to develop a geometric calculus. Such a calculus “consists of a system of
operations analogous to those of algebraic calculus but in which the objects with which the
calculations are performed are, instead of numbers, geometrical objects.” Much of the book
consists of calculations dealing with points, lines, planes, and volumes. But in the ninth chapter,
Peano defines what he called a linear system. This was a set of objects that was provided with
operations of addition and scalar multiplication. These operations were to satisfy axioms Al1-A4
and S1-S4 presented in this section. Peano also defined the dimension of a linear system to be the
maximum number of linearly independent objects in the system and noted that the set of
polynomial functions in one variable forms a linear system of infinite dimension.

Curiously, Peano's work had no immediate effect on the mathematical community. The
definition was even forgotten. It only entered the mathematical mainstream through the book
Space-Time-Matter (1918) by Hermann Weyl (1885-1955). Weyl wrote this book as an
introduction to Einstein’s general theory of relativity. In Chapter 1 he discusses the nature of a
Euclidean space and, as part of that discussion, formulates the same standard axioms as Peano did
earlier. He also gives a philosophic reason for adopting such a definition:

Not only in geometry, but to a still more astonishing degree in physics, has it becomc more and more

evident that as soon as we have succeeded in unraveling fully the natural laws wvhich govern reality, we find

them to be expressible by mathematical relations of surpassing simplicity and architectonic perfection.

. . . Analytical geometry {the axiom system which he presented] . . . conveys an idea, even if inadequate,

of this perfection of form.
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EXAMPLE 1

SOLUTION

EXAMPLE 2

SOLUTION

EXAMPLE 3

VECTOR SPACES

,

Show that the set M, , of all m X n matrices is a vector space, using as vector
addition and scalar multiplication the usual addition of matrices and multipli-
cation of a matrix by a scalar.

We have seen that addition of m X n matrices and multiplication of an 1 X n
matrix by a scalar again yield an m X n matrix. Thus, M,,, is closed under
vector addition and scalar multiplication. We take as zero vector in M,,, the
usual zero matrix, all of whose entries are zero. For any matrix 4 in M,,,, we
consider —A to be the matrix (—1)A. The properties of matrix arithmetic on
page 45 show that all eight properties A1-A4 and S1-S4 required of a vector
space are satisfied. =

The preceding example introduced the notation M,, , for the vector space
of all m x n matrices. We use M, for the vector space of all square n X n
matrices.

Show that the set P of all polynomials in the variable x with coefficients in
R is a vector space, using for vector addition and scalar multiplication
the usual addition of polynomials and multiplication of a polynomial by a
scalar.

Let p and ¢ be polynomials

p=agtax+axt+ - +ax
and

g=by+bx+bxt+---+bx"
If m = n, the sum of p and ¢ is given by

prag=(a+b)+(a+b)x+ - +(a+bx
+ b, X e+ b,

Forexample,if p=1+2x+ 3x’andg=x + X}, thenp+g=1+3x+ 3x? +
X3, A similar definition is made if m < n. The product of p and a scalar 7 is given
by ’

Tp = ray + rax +raxt + oo+ rax"

Taking the usual notions of the zero polynomial and of —p, we recognize that
the eight properties A1~A4 and S1-S4 required of a vector space are familiar
properties for these polynomial operations. Thus, P is a vector space. =

Let F be the set of all real-valued functions with domain R; that is, let F be the
set of all functions mapping R into R. The vector sum f+ g of two functions f
and g in Fis defined in the usual way to be the function whose value at any x in
R is f{x) + g(x); that is,

([+ D(x) = fx) + g(x).
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For any scalar r in R and functlon fin F, the product rfis the function whose
value at x is rf(x), so that

| (%) = ().
Show that F with these operations is a vector space.

We observe that, for fand gin F, bcih f+ gand rfare functions mapping R into
R, sof+ gand rfare in F. Thus, F is closed under vector addition and under
scalar multiplication. We take as zero vector in F the constant function whose
value at each x in R is 0. For each function fin F, we take as —/the function
(=1)fin F.

There are four vector-addition properties to verify, and they are all easy.
We illustrate by verifying condition A4. For fin F, the function f + (—f) =
S+ (=1)fhas as its value at x in R the number f(x) + (—1)f(x), which is 0.
Consequently, /+ (—f) is the zero function, and A4 is verified.

The scalar multiplicative properties are just as easy to verify. For example,
to verify S4, we must compute' 1f at any x in R and compare the resuit with
Jx). We obtain (1f)(x) = Lf(x) = f(x),and so 1If = f. =

Show that the set P. of formal power series in x of the form

Ea,x“=ao+a,x+azx2+-~-+a”x"+---,
n=0

with addition and scalar multiplication defined by

E a,,x E "/ 2 a, + b)x" and r(E a,x”} = E rax",
n=0 n=0 n=0 n=0 7=0

is a vector space.*

The reasoning here is precisely the same as for the space P of polynomials in

Example 2. The zero series is 2 0x", and the additive inverse of 2 a.x" is
n=0 n=0

E (—a,)x". All the other axioms follow from the associative, commutative,
n=0
and distributive laws for the real-number coefficients a, in the series. =

The examples of vector spaces that we have presented so far are all based
on algebraic structures familiar to us—namely, the algebra of matrices,
polynomials, and functions. You may be thinking, “How can anything with an

*We can add only a finite number of vectors in a vector space. Thus we do not regard these formal
power secies as infinite sums in P, of monomials. Also, we are not concerned with questions of
convergence or divergence, as studied in calculus. This is the significance of the word formal.
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addition and scalar multiplication defined on it fail to be a vector space?” To
answer this, we give two more-esoteric examples, where checking the axicms is
not as natural a process.

Lei R? have the usual operation of addition, but define scalar multiplication
r[x, y] by 7[x, y] = [0, 0]. Determine whether R? with these operations is a
vector space. '

Because conditions Al~A4 of Definition 3.1 do not involve scalar multiplica-
tion, and because addition is the usual operation, we need cnly check
conditions S1-S4. We see that all of these hold, except for condition S4:
because 1[x, y] = [0, 0], the scale is not preserved. Thus, R? is not a vector
space with these particular two operations. =

Let R2 have the usual scalar multiplication, but let addition ¥ be defined on R?
by the formula

oyl ynsy=[x+r2y+s].

Determine whether R? with these operations is a vector space. (We use the
symbol  for the warped addition of vectors in R?, to distinguish it from the
usual addition.)

We check the associative law for }:
5y ¥ sy la bl =[x+r2y+s]}[a b]
=[(x+r)+a 22y +s)+ b
=[x+r+a4y+ 25+ b,
whereas
[ ¥ (Irsl ¥ [a, b)) = [x, )] ¥ (r + a, 25 + B]
=[x+ (r+a),2y+(2s + b)
=[x+r+a2y+2s+ b

Because the tweo colored scalars are not equal, we expect that - is not
associative. We can find a specific violation of the associative law by choosing

y 7 0; for example,
(10, 11 ¥ [0, O]) ¥ [0, 0] = [0, 4],

whereas
[0, 1] ¥ ([0, 0] ¥ [0, O]) = [0, 2].

Therefore, R? is not a vector space with these two operations. =

We now indicate that vector addition and scalar multiplication possess
still more of the properties we are accustomed to expect. It is impertant to
realize that everything has to be proved using just the axioms Al through A4
and S1 through S4. Of course, once we have proved something from the
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axicms, we can then use it in the proofs of other things. The properties that
appear in Theorem 3.1 below are listed in a convenient order for proof; for
example, we will see that it is convenient to know property 3 in order to prove
property 4. Property 4 states that in a vector space ¥, we have Ov = @ for all
v € V. Students often attempt to prove this by saying.

“Letv=(a,a...,a,) ThenOv=0(@a,a,...,a,)
=(0,0,...,0)=0."

This is a fine argument if ¥ is R", but we have now expanded our concept of

vector space, and we can no longer assume that v € ¥ is some n-tuple of real
numbers.

THEOREM 3.1 Elementary Pronerties of Vector Spaces

- Bvery vecto; space Vhas the followmg properties:

1. The vectorO 18 tbe 'ntque vector x satisfying the equation x + v = v
for all vecters vin.V.

2 -fFor each - vecto i ¥V, the: vector —v is the unigue vector y

‘satlsfymg_'v +y o '

ectors-u, v, and win V; then v = w

o v oa W

PROOF We prove only properties 1 and 4, leaving proofs of the remaining
properties as Exercises 19 through 22. In proving property 4, we assume that
properties 2 and 3 have been proved.

Turning to property 1, the standard way to prove that something is unique
is to suppose that there are two of them, and then show that they must be
equal. Suppose, therefore, that there exist vectors § and ' satisfying

0+v=v and 0 +v=v forallve V.
Taking v = 0' in the first equation and v = § in the second equation, we obtain
0+0" =0 and 0'+0=0.

By the commutative law A2, we know that 6 + 0’ = 0’ + 0, and we conclude
that 0 = 0'.

Turning to property 4, notice that the equation Ov = 0 which we want to
prove involves both scalar multiplication (namely, Ov) and vector addition
(0 is an additive concept, given by axiom A3). To prove a relationship between
these two algebraic operations, we must use an axiom that involves both of
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them—namely, one of the distributive laws S1 or S2. Using distributive law
S2, we have forv-€ V,

Ov=(0+ O)y = Ov + Ov.
By the additive identity axiom A3 and the commutative law A2, we know that
' Ov=0+0v=0v+0,
Therefore,
Ov+0v=0v+0,
and, by property (3), we conclude that Ov = 0. 4

The Universality of Function Spaces (Optionai}

In Example 3, we showed that the set F of all functions mapping Rinto Ris a
vector space, where we define for f, ¢ € Fand for r € R

(/+ 8 = f1x) + g(x) and (1f)x) = 1f(x). )

Note that these definitions of addition and scalar multiplication for functions
having R as both domain and codomain use only the algebraic structure of the
codomain R and not the algebraic structure of the domain R. That is, the
defining additicn and scalar multiplication appearing on the right-hand sides
of Egs. (1) take place in the codomain. We do not see anything like f(a + b),
which involves addition in the domain R, or like f{rx), which involves scalar
multiplication in the domain. This suggests that if S is any set and we let Fbe
the set of all functions mapping S into R, then Example 3 might still go
through, and show that F is a vector space. We show that this is the case in our
next example.

Let Fbe the set of all real-valued functions on a (nonempty) set S; that is, let F
be the set of all functions mapping S into R. For f; g € F, let the sum f+ g of
two functions fand g in F be defined by

(f+ 8x) = flx) + g(x) forall x € S,
and, for any scalar r, let scalar multiplication be defined By
(r)(x) = rf(x) forall x € S.
Show that F with these operations is a vector space.

The solution of Example 3 is valid word for word if we replace each reference
R to the domain by the new domain S. That is, the functions map Sinto R, and
we let x € S rather than x € R in this solution. =

We now indicate why we headed this discussion “The Universality of
function Spaces.” Let S = {1, 2}, so that I1s the set of all functicns mapping
{1, 2}into R. Let us abbreviate the description of a function fas [ f(1), /(2)]. For
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example, we consider [—3, 8] to denote the function in F that maps | into —3
and maps 2 inte 8. In this way, we identify each vector [a, b] in R with a
function f mapping {1, 2} into R—namely, f{1) = a and f{(2) = b. If we view
[a, b] as the function fand [c, d] as the function g, then

Ura)=fl)+eg(l)y=a+c and (f+)Q2)=f2)+g2)=0b+d

Thus, the vector [a™+ ¢, b + d] = [a, b] + [c, d] in R? is the function [+ g.
Similarly, we see that the vector [ra, rb] = r[a, b] in R?is the function r/. In this
way, we can regard R? as the vector space of functions mapping {1, 2} into R.
We realize that we can equally well consider each vector of R* as a function

mapping {1, 2, 3, . . ., n} into R. For example, the vector [-3, 5, 2, 7] can be
considered as the function f: {1, 2, 3, 4} — R, where f(1) = —3,/(2) = 5, f(3) =
2,and f(4) = 7.

In a similar fashion, we can view the vector space M,,, of matrices in
Example 1 as the vector space of functions mapping the positive integers from
1 to mz into R. For example, taking m = 2 and n = 3, we can view the matrix

[a, a, as
a, a, aJ
as the function f: {1, 2, 3,4, 5, 6} — R, where f{i) = q,. Addition of functions as
defined in Example 7 again corresponds to addition of matrices, and the same
is true for scalar multiplication.

The vector space P of all polynomials in Example 2 is nct quite as easy to
present as a function space, because not all the polynomials have the same
number of terms. However, we can view the vector space P, of formal power

series in x as the space of all functions mapping {0, 1, 2, 3,...} into R.
Namely, if fis such a function and if f(n) = a,forn €{0, 1,2, 3, . . . }, then we

can denote this function symbolically by 2 ax". We see that function
n=0

addition and multiplication by a scalar will produce precisely the addition and
multiplication of power series defined in Example 4. We will show in the next
section that we can view the vector space P of polynomials as a subspace of P..
We have now freed the domain of our function spaces from having to be
the set R. Let’s see how much we can free the codomain. The definitions

(f+ &) =ftx) + g(x) and (rf)x) = 1f(x)

for addition and scalar multiplication of functions show that we need a notion
of addition and scalar multiplication for the codomain. For function addition
to be associative and commutative, we need the addition in the codomain to be
associative and commutative. For there to be a zero vector, we need an
additive identity—let’s call it 0—in the codomain, so that we will have a *“zero
constant function” to serve as additive identity, etc. It looks as though what we
need is to have the codomain itself have a vector space structure! This is
indeed the case. If S is a set and ¥ is a vector space, then the set £ of ali
functions /= S — ¥ with this notion of function addition and multiplication bx
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a scalar is again a vector space. Note that R itself is a vector space, so the set of
functions f: § - R in Examiple 7 is a speciai case of this construction. For
another example, the set of all functions mapping R’ into R® has a vector space
structure, I third-semester calculus, we sometimes speak of a “vector-valued
function,” meaning a function whose codomain is a vector spave, although we
usually don’t talk about vector spaces there.

Thus, startmg with a set S, we could consider the vector space V, of all
functions mapping S into R, and then the vector space ¥, of ali functions
mapping S into ¥, and then the vector space V; of all functions mapping §
into V,, and then—oops! We had better stop now. People who do too much of
this stuff are apt to start climbing the walls. (However, mathematicians do
sometimes build cumulative structures in this fashion.)

| bUMMAR

1. A vector space is a nonempty set ¥ of objects called vectors, together with
rules for adding any two vectors v and w in V and for multiplying any
vector vin V'by any scalar rin R. Furthermore, ¥ must be closed under this
vector addition and scalar multiplication so that v + w and rv are both in
V. Moreover, the following axiomis must be satisfied for all vectors u, v, and
w in ¥ and all scalars r and s in R:

Al (utv)+w=u- (v+w

A2 v+tw=w+y

A3 There exists a zero vector 0 in V' such that 0 + v = v forallv €V.
A4 Each v €V has an additive inverse —v in Vsuch that v + (-v) = 0,
SI rivtw)=rv+rw

S2 (r+ sy =rv+sy

S3 r(sv) = (rs)v

S4 lv=y

2. Elementary properties of vector spaces are listed in Theorem 3.1.

3. Examples of vector spaces include R", the space M, of all m X n matrices,
the space of all polynomials in the variable x, and the space of all functions
f:R— R. For all of these examples, vector addition and scalar multiplica-
tion are the addition and multiplication by a real number with which we
are already familiar. -

4. (Optional) For any set S, the set of all functions mapping .S into R forms a
vector space with the usual definitions of addition and scalar multiplica-
tion of functions. The Euclidean space R can be viewed as the vector
space of functions mapping {1, 2, 3, ..., n} into R, where a vector a =
[a, @, as, . . ., a,] is viewed as the function fsuch that f(i) = q,

5. (Optional) Still more generally, for any set S and any vector space V, the
set of all functions mapping S into ¥ forms a vector space with the usual
definitions of addition and scalar multiplication of functions.
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EXERCISES

[n Exercises 1-8, decide whether or not the given
set, together with the indicated operations of
addition and scalar multiplication, is a (real)
yector space.

1. The set R?, with the usual addition but with
scalar multiplication defined by r[x, y] =
[ry, rx].

2. The set R?, with the usual scalar
multiplication but with addition defined by
xx, ] ¥ rsl=y+sx+1

3. The set R? with addition defined by
eyl ¥la,bl=[x+a+ 1,y + bland
with scalar multiplication defined by
rfx, y} =[x+ r- 1, nj.

4. The set of all 2 X 2 matrices, with the usual
scalar multiplication but with addition
defined by 4 ¥ B = O, the 2 x 2 zero
matrix.

5. The set of all 2 x 2 matrices, with the usual
addition but with scalar multiplication
defined by r4 = O, the 2 X 2 zero matrix.

6. The set F of all functions mapping R into R,
with scalar multiplication: defined as in
Example 7 but with addition defined by
(f ¥ &) = max{fix), g(x)}.

7. The set F of all functions mapping R into R,
with scalar multiplication defined as in
Example 7 but with addition defined by
(f Y 8)x) = f(x) + 2g(x).

8. The set F of all functions mapping R into R,
with scalar multiplication defined as in
Example 7 but with addition defined by
([ &)x) = 2/(x) + 2g(x).

In Exercises 9~ 16, determine whether the given
set is closed under the usual operations of
addition and scalar multiplication, and is a (real)
vector space.

9. The set of all upper-triangular n x n
matrices.

10.

16.

17.

i8.

The set of al] 2 x 2 matrices of the form

[ 1
el

where each X may be any scalar.

. The set of all diagonal n x »n matrices.
12.

The set of all 3 X 3 matrices of the form

x 0 x
0 x 0],
X 0 x

where each X may be any scalar.

. The set {0} consisting only of the number 0.
4.
15.

The set Q of all rational numbers.
The set C of complex numbers; that is,

C={a+bV-1|a binR},

with the usual addition of complex numbers
and with scalar multiplication defined in the
usual way by r(a + bV —-1)=ra + rbV -1

for any numbers a, b, and r in R.

The set P, of all polynomials in x, with real
coefficients and of degree less than or equal
to n, together with the zero polyncmial.
Your answer to Exercise 3 should be that R?
with the given cperations is a vector space.
a. Describe the “zero vector” in this vector
space.
b. Explain why the relations r[0, 0] =
{r = 1, 0] # [0, 0] do not violate property
(5) of Theorem 3.1.

Mark each of the following True or Faise.

—_ a. Matrix multiplicaiion is a vector-space

operation on the set M,,,, of all m1 X n
matrices.

—— b. Matrix multiplication is a vector-space

operation on the set M, of all square
n X n matrices.

— ¢ Multiplication of any vector by the zero

scalar always yields the zero vector.

___d. Multiplication of a nonzero vector by a

nonzero scalar never yields the zero
vector.

___e. No vector is its own additive inverse.



190 CHAPTER 3 VECTOR SPACES

— f. The zero vector is the only vector that is
its own additive inverse.

—_ g. Multiplication of two scalars is of no
concern in the definition of a vector
space. .

___ h. One of the axioms for a vector space
relates addition of scalars, multiplication
of a vector by scalars, and addition of
vectors.

. i. Every vector space has at least two
vectors.

—— J. Every vector space has at least one
vector. '

19. Prove property 2 of Theorem 3.1.
20. Prove property 3 of Theorem 3.1.
21. Prove property 5 of Theorem 3.1.
22. Prove property 6 of Theorem 3.1.

23. Let V be a vector space. Prove that, if v is in
V and if r is a scalar and if rv = 0, then
either r = 0orv=0.

24. Let V' be a vector space and let v and w be
nonzero vectors in ¥. Prove that if v is not a
scalar multiple of w, then v is not a scalar
multiple of v + w.

25. Let V' be a vector space, and let v and w be
vectors in V. Prove that there is a unique
vector xin ¥ such that x + v = w.

Exercises 26~29 are based on the optional
subsection on the universality of function spaces.

26. Using the discussion of function spaces at
the end of this section, explain how we can
view the Euclidean vector space R™ and the
vector space M,,, of all m X n matrices as
essentially the same vector space with just a
different notation for the vectors.

27. Repeat Exercise 26 for the vector space M,
of 2 X 6 matrices and the vector space M,
of 3 X 4 matrices.

28. 1f you worked Exercise 16 correctly, you
found that the poiynomials in x of degree at
most n do form a vector space P,. Explain
how P, and R**! can be viewed as essentially
the same vector spacs, with just a different
notation for the vectors.

29. Referring to the three preceding exercises,
list the vector spaces R%, R¥, R%, P,,, Py,
Pyg, Mg, Myg, Myg, M,y My, Mg, and
M; in two or more columns in such a way
that any two vector spaces listed in the
same column can be viewed as the same
vector space with just different notation for
vectors, but two vector spaces that appear in.;
different columns cannot be so viewed.

BASIC CONCEPTS OF VECTOR SPACES
We now extend the terminology we developed in Chapters 1 and 2 for U
Euclidean spaces R" to general vector spaces V. That is, we discuss linea
combinations of vectors, the span of vectors, subspaces, dependent an
independent vectors, bases, and dimension. Definitions of most of the§
concepts, and the theorems concerning them, can be lifted with minor changeg
from Chapters 1 and 2, replacing “in R*” wherever it occurs by “in a vecto
space V.” Where we do make changes, the reasons for them are explained:

Linear Combinations, Spans, and Subspaces

The major change from Chapter 1 is that our vector spaces may now be S
large that they cannot be spanned by a finite number of vectors. Eac
Euclidean space R" and each subspace of R* can be spanned by a fimite set 0%
vectors, but this is not the case for a general vector space. For example, 7
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finite set of polynomials can span the space P of all polynomials in x, because a
finite set of polynomials cannot contain polynomials of arbitrarily high degree.
Because we can add only a finite number of vectors, our definition of a linear
combination in Chapter 1 will be unchanged. However, surely we want to
consider the space P of all polynomials to be spanned by the monomials in the
infinite set{1, x, x?, X3, . . . }, because every polynomial is a linear combination
of these monomials. Thus we must modify the definition of the span of vectors
to include ihe case where the number of vectors may be infinite.

DEFINITION 3.2 Linear Combinations

» Sp(vl, vz-, e v,,) Hw= sp(X) the vectors in X span or generate W,
ny- p( )for som'  finite subset X o _V then Vis ﬁmtely generated.

HISTORICAL NOTE A COORDINATE-FREE TREATMENT of vector-space concepts appeared in
1862 in the second version of Ausdehinungsiehre (The Calculus of Extension) by Hermann
Grassman (1809-1877). In this version he was able to suppress somewhat the philosophical bias
that had made his eazlier work so unreadable and to concentrate on his new mathematical ideas.
These included the basic ideas of the theory of n-dimensional vector spaces, including linear
combinations, linear independence, and the notions of a subspace and a basis. He developed the
idea of the dimension of a subspace as the maximal number of linearly independent vectors and
prered the fundamental relation for two subspaces ¥ and W that dim(V + W) = dim(V) +
dim(W) ~ dim(V' N W).

Grassmann’s notions derived from the attempt to translate geometric ideas about n-
dimensional space into the language of algebra without dealing with coordinates, as is done in
ordinary analytic geometry. He was the first to produce a complete system in which such concepts
as points, line segments, planes, and their analogues in higher dimensions are represented as single
elements. Although his ideas were initially difficult to understand, ultimately they entered the
mathematical mainstream in such fields as vector analysis and the exterior algebra. Grassmann
himself, unfortunately, never attained his goal of becoming a German university professor,
spending most of his professional life as a mathematics teacher at a gymnasium (high school) in
Stettin. In the final decades of his life, he turned away from mathematics and established himself
as an expert In linguistics.
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ILLUSTRATION 1

ILLUSTRATION 2

In general, we suppress Euclidean space illustrations here, because they
are already familiar from Chapter 1.

Let Pbe the vector space of all polynomials, and let M = {1, x, x, X, . . . } be }
this subset of monomizls. Then P = sp(M). Our remarks above Deﬁnltlon 32 §
indicate that P is not finitely generated. =

Let M,,, be the vector space of all m X n matrices, and let E be the set |
consisting of the matrices E;;, where E; is the m X n matrix having entry 1 in
the ith row and jth column and entnes 0 elsewhere. There are mn of these 1
matrices in the set E. Then M,,, = sp(E) and is finitely generated. =

The notion of closure of a subset of a vector space ¥ under vector addiiion - §
or scalar multiplication is the same as for a subset of R”. Namely, a subset W of 4
a vector space Vis closed under vector addition if for all u, v € W the sum u + v -
isin W.If for aliv € Wand all scalars r we have rv € W, then Wis closed under
scalar multiplication. 3
We will call a subset W of ¥ a subspace precisely when it is nonempty and 33
closed under vector addition and scalar multiplication, just as in Definition 3
1.16. However, we really should define it here in a different fashion, reflecting
the fact that we have given an axiomatic definition of a vector space. A vector:3
space is just one of many mathematical structures that are defined axiomati-28
cally. (Some other such axiomatic structures are groups, rings, fields, topologi-
cal spaces, fiber bundles, sheaves, and manifolds.) A substructure is always3
understood to be a subset of the original structure set that satisfies, all by itsel
the axioms for that type of structure, using inherited features, such a
operations of addition and scalar multiplication, from the original structure. 3
We give a definition of a subspace of a vector space ¥ that reflects this point of g
view, and then prove as a theorem that a subset of ¥'is a subspace if and only if
it is nonempty and closed under vector addition and scalar multiplication. -4

DEFINITION 3.4 Subspace

A subset Wofa vector space Vis a subsp Zif Witself fulfills the
requirements of a vector-space, where addition-and scalar multiplica-

tion of vectors in Wproduce the same vectors as these operations did
in V. ’

In order for a nonempty subset W of a vector space ¥ to be a subspace, th
subset (together with the operations of vector addition and scalar multiplic
tion) must form a self-contained system. That is, any addition or scala
multiplication using vectors in the subset ¥ must always yield a vector tha
lies again in W. Then taking any v in W, we see that Ov = @ and (— )v = —v ar
also in W. The eight properties Al-A4-and S1-S4 required of a vector spa
in Definition 2.1 are sure to be true for the subset, because they hold in all of
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That is, if ¥ 1s nonempty and is closed under addition and scalar multiplica-
tion, it is sure to be a vector space in its own right. We have arrived at an
efficient test for determining whether a subset is a subspace of a vector space.

THEOREM 3.2 Test for a Subspace

A subset W of a vector space V'is a subspace of V if and only if Wis
nonempty and satisfies the following two conditions:

1. Ifvandw a_‘:e in W,thenv+ wisin Closure under vector addition
Ww.

2 If ris any scalar in R andvisin W, * Clostre under. scalar
: is ' multlpllcanon

Condition (2) of Theorem 3.2 with r = 0 shows that the zero vector lies in
every subspace. Recall that a subspace of R" always contans the origin.

The entire vector space V satisfies the conditions of Theorem 3.2. That is,
Vis a subspace of itself. Other subspaces of V are called proper subspaces. One
such subspace is the subset {0}, consisting of only the zero vector. We call {0}

_the zero subspace of V.

Note that if ¥'is a vector space and X is any nonempty subset of V, then
sp(X) is a subspace of V, because the sum of two linear combinations of
vectors in X is agzin a linear combination of vectors in X, as is any scalar
multiple of such a linear combination. Thus the closure conditions of
Theorem 3.2 are satisfied. A moment of thought shows that sp(X) is the
smallest subspace of ¥ containing all the vectors in X.

The space P of all polynomials in x is a subspace of the vector space P, of
power series in x, described in Example 4 of Section 3.1. Exercise 16 in Section
3.1 shows that the set consisting of all polynomials in x of degree at most 7,
together with the zero polynomial, is a vector space P,. This-space P, is a
subspace both of Pand of P,. =

The set of invertible # X » matrices is not a subspace of the vector space M, of
all # X n matrices, because the sum of two invertible matrices may not be
invertible; also, the zero matrix is not invertible. =

The set of all upper-triangular # X » matrices is a subspace of the space M, of
all n X n matrices, because sums and scalar multiples of upper-triangular
matrices are again upper triangular. =

Let F be the vector space of all functions mapping R into R. Because sums and
scalar multiples of continuous functions are continuous, the subset C of F
consisting of all continuous functions mapping R into R is a subspace of £
Because sums and scalar multiples of differentiable functions are differentia-
ble, the subset D of F consisting of all differentiable functions mapping R into
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R is also a subspace of F. Because every different.able function is continuous,
we see that D is also a subspace of C. Let D, be the set of all functions mapping
R into R that have derivatives of all orders. Note that D, is closed under
addition and scalar multiplication and is a subspace of D, C, and F. =

Let Fbe the vector space of all functions mapping R into R. Show that the set §
of all solutions in F of the differential equation

[r+f=0
is a subspace of F.

We note that the zero function in F is a solution, and so the set Sis nonempty. .
If fand garein S, then /" + f=0and g’ + g=0,andso(/+ g)' + (/+ g) =
[rg+freg=(/"+])+ (g +g) =0+ 0, which shows that Sis closed 4
under addition. Similarly, (tf ) + rf = rf* + rf = r(f" + [} =r0=0,505is
closed under scalar multiplication. Thus S is a subspace of F. = i

The preceding example is a sperial case of a general theorem stating that -
all solutions in F of a homogeneous linear differential equation form a
subspace of F. We ask you to write out the proof of the general theorem in
Exercise 40. Recall that all solutions of the homogeneous linear system Ax = 0,
where A4 is an /. X n matrix, form a subspace of R".

Independence

We wish to extend the notions of dependence and independence that were 738
given in Chapter 2. We restricted our consideration to finite sets of vectors in 3
Chapter 2 because we can’t have more than  vectors in an independent subset 38
of R". In this chapter, we have to worry about larger sets, because it may take
an infinite set to span a vector space V. Recall that the vector space P of all
polynomials cannot be spanned by a finite set of vectors. We make the 3
following slight modification to Definition 2.1.

DEFINITION 3.5 Linear Dependenée and Independence .

a set of vectors in a vector space V. A dependence relation in
this set. X is an equation of the form

rypt Ryt oo -ty ——_7'0, some r; #0
where v, € Xfori=1,2,. .. k. If such a deperidence relation exists,

then X is a linearly dependent set of vectors. Otherwise, the set X of
vectors is linearly independent.

he subset {1, x, &%, ... .. ", ... }of monomials in the vector space P of all 3
polynomials is an independent st =
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The subset {sin’x, cos’x, 1} of the vector space F of all functions mapping R
into R is dependent. A dependence relation is

1(sin’x) + l(cos’x) + (= 1)1 = 0.

Similarly, the subset {sin’x, cosx, cos 2x} is dependent, because we have the
trigonometric identity cos 2x = cos’x — sin’x. Thus 1(cos 2x) + (~ 1)(cosx) +
I(sin®’x} = 0 is a dependence relation. =

We know a mechanical procedure for determining whether a finite set of
vectors in R” is independent. We simply put the vectors as column vectors in a
matrix and reduce the matrix to row-echelon form. The set is independent if
and only if every column in the matrix contains a pivot. There is no such
mechanical procedure for determining whether a finite set of vectors in a
general vector space Vis independent. We illustrate two methods that are used
in function spaces in the next twec examples.

Show that {sin x, cos x} is an independent set of functions in the space F of all
functions mapping R into R.

We show that there is no dependence relation of the form
r(sin x) + s(cos xj = 0, (1)

where the G on the right of the equation is the function that has the value 0 for
all x. If Eq. (1) holds for all x, then setting x = 0 and x = #/2, we obtain the
linear system

7(0)+s(1)=0 Settingx=10

r(1) + s(0) = 0, Setting x =§

whose only solutior: is 7 = s = 0. Thus Eq. (1) holds only if 7 = s = 0, and so the
functions sin x and cos x are independent. =

From Example 2, we see that one way to try to show independence of k
functions fi(x), £i(x), . . . , fix) is to substitute k different values of x in a
dependence relation format

rfi(x) + nh(x) + st nflx) = 0.

This will lead to a homogeneous system of k equations in the k unknowns
T, Iy - -+, Ih. If that system has only the zero solution, then the functions are
independent. If there is a nontrivial solution, we can’t draw any conclusion.
For example, substituting x = 0 and x = = in Eq. (1) in Example 2 yields the
system

r@®)+s=0 Séttingx =0
r(0) —s=10, Settingx==
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which has a nontrival solution—for example, r = 10 and s = 0. This occurs
because we just chose the wrong values for x. The values 0 and #/2 for x do
demonstrate independence, as we saw in Example 2.

Show that the functions e*and e are mdependem in the vector space Fofall
functions mapping R into R.
We set up the dependence reiation format

re* + se™ = (,

and try to determine if we must have r = § = 0. Illustrating a different
technigne than in Example 2, we write this equation and its derivative:

rex + se* =0
re* + 2se™ = 0. Differentiating

LK i

Setting x = 0 in both equationg, we obtain the homogeneous linear system

5

3
r+ s=20 2
r+2s=20, :‘é

which has only the trivial solution r = s = 0. Thus the functions are
independent. =

In summary, we can try to show independence of functions by starting -
with an equation in dependence relation format, and then substituting?
different values of the variable, or differentiating (possibly several times) and
substituting values, or a combination of both, to obtain a square homogeneou
system with the coefficients in the dependence relation foriat as unknowns. If ;
the system has only the zero solution, the functions are independent. If there. 35
are nontrivial solutions, we can’t come to a conclusion without more work. ‘38

Bases and Dimension

Recail that we defined a subset {w,, w,, . . . , w,} to be a basis for the subspace ;
W = sp(w,, W,, . . ., w,) of R"if every vector in W can be expressed uniquely as:
a linear combination of w,, w,, . . ., w,. Theorem 1.15 shows that to demon
strate this uniqueness, we need only show that the only linear combinatio
that yields the zero vector is the one with all coefficients 0—that is, th
uniqueness condition can be replaced by the condition that the s¢
{w,, w,, ..., w}beindependent. This led usto an alternate characterization 0
a basis for W (Theorem 2.1) as a subset of W that is independent and that span
W. 1t is this alternate description that is traditional for general vector spaces
The uniqueness condition then becomes a theorem; it remains the most3
important aspect of a basis and forms the foundation for the next section 0

form a basis: for cxample, a basis for the space £ of all polynogmials is the set
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{l, x, X, ..., x", ...} of monomials. The following definition takes this
possibility into account. Also, because a subspace of a vector space is again a
vector space, it is unnecessary now to explicitly include the word “subspace”
in the definition.

DEFINITION 3.6 Basic for a Vector Space

Let ¥ be a vector space. A set of vectors in ¥V is a basis for V if the
following conditions are met:

1. The set of vectors spans V.
2. The set of vectors is linearly independent.

Theset X ={1,x,x% ...,x", ... }of monomials is a basis for the vector space
P of all polynomials. It is not a basis for the vector space P,.of formal power

@
series in x, discussed in Example 4 of Section 3.1, because a series 2 ax"
n=0

cannot be expressed as a finite sum of scalar multiples of the monomials unless
all but a finite number of the coeflicients a, are 0. For example, 1 + x + x? +
x*+...isnot a finite sum of monomials. Remember that all linear combina-
tions are finite sums.

The vector space P, of polynomials of degree at most #, together with the
zero polynomial, has as abasis {l, x, x%, . .., X"}. =

We now prove as a theorem the uniqueness which was the defining
criterion in Definition 1.17 in Section 1.6. Namely, we show that a subset B of
nonzero vectors in a vector space Vis a basis for V'if and only if each vector v
in ¥ can be expressed uniquely in the form

v=rb +nrb+ - +rb - )

for scalars r; and vectors b, in B. Because B can be an infinite set, we need to
elaborate on the meaning of uniqueness. Suppose that there are two expres-
sions in the form of Eq. (2) for v. The two expressions might involve some of
the same vectors from 3 and might involve some different vectors from B. The
important thing is that each involves only a finite number of vectors. Thus if
we take all vectors in B appearing in one expression or the other, or in both, we
have just a finite list of vectors to be concerned with. We may assume that both
expressions contain each vector in this list by inserting any missing vector with
a zero coefficient. Assuming now that Eq. (2) is the result of this adjustment of
the first expression for v, the second expression for v may be written as

V= S|b| + SZbZ + oo+ Skbk' (3)

Uniqueness asserts that s; = r; for each i.
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THEOREM 3.3 Unigue Cor.bination Criterion for a Basis

Let B be a set of nonzero vectors in a vector space V. Then B is a basis
for V'if and only if each vector v in V can be unigueiy expressed in the
form of Eq. (2) for scalars r; and vectors b, € B.

PROOF Assume that B is a basis tor V. Condition 1 of Definition 3.6 tells us J
that a vector vin ¥ can be expressed in the form of Eq. (2). Suppose now thaty |
can also be written in the form of Eq. (3). Subtracting Eq. (3) from Eq. (2), we 4
obtain

(ro=s)by+ (r, = sy + + - - + (1, — s)b, = 0.

Because B is independent, we see that r, — 5, = 0,7, ~ 5,=0,...,r,— 5, =0, §
and so r; = s; for each i. Thus we have established uniqueness. 3

Now assume that each vector in ¥ can be expressed uniquely in the form of 3
Eq. (2). in particular, this is true of the zero vector. This means that no ‘g
dependence relation in B is possible. That is, if 3

r1b1+r2b2+ A +rkbk=0
for vectors b, in B and scalars r, then, because we always have
Ob, + Ob, + - -+ + 0b, = 0,

each r; = 0 by uniqueness. This shows that B is independent. Because B also
generates V (by hypothesis), it is a basis. 4

Dimension

We will have to restrict our treatment here to finitely generated vector
spaces—that is, those that can be spanned by a finite number of vectors. We i
can argue just as we did for R” that every finitely generated vector space V
contains a basis.* Namely, if V' = sp(v,, v,, . . . , v), then we can examine the
vectors v; in turn, and delete at each step any that can be expressed as linear ‘3§
combinations of those that remain. We would also like to know that any two 3
bases have the same number of elements, so that we can have a well-defined 33
concept of dimension for a finitely generated vector space. The main tool is
Theorem 2.2 on page 130, which we can restate for general vector spaces,
rather than for subspaces of R". '

*If we are willing to assume the Axiom of Choice:

Given a collection of nonempty sets, no two of which have an element in common, there exists a

“choice set” C that contains exactly one element from each set in the collection.
then we can prove that every vector space has a basis, and that given a vector space V, every basis
has the same number of elements, although we may be totally unable to actually specify a basis.
This kind of work is regarded as magnificent mathematics by some and as abstract nonsense by
others. For example. using the Axiom of Choice, we can prove that the space P of all formal
power serics in x has a basis. But we ace stili unablc to exhibit one! It has been shown that the
Axiom of Choice is independent of the other axioms of set theory.
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THEOREM 3.4 Relative Size of Spanning and Independent Sets

Let V'be a vector space. Let w), w,, . . . , w, be vectors in V'that span ¥,
and let v, v,, ..., v, be vectors in V that are independent. Then
k=m. ) .

PROOF The proof is the same, word for word, as the proof of Theo-
rem2.2. A

It is not surprising that the proof of the preceding theorem is the same as
that of Theorem 2.2. The next section will show that we can expect Chapter 2
arguments to be valid whenever we deal just with finitely generated vector

spaces.
The same arguments as those in the corollary to Theorem 2.2 give us the
following corollary to Theoremn 3.4. '

COROLLARY Invariance of Dimension for Finitely Generated Spaces

Let V be a finitely generated vector space. Then any two bases of V
have the same number of elements.

We can now rewrite the definition of dimension for finitely generated
vector spaces.

DEFINITION 3.7 Dimension of a Finitely Generated Vector Space

Let P, be the vector space of polynomials in x of degree at most n. Because
{l, x, x% ..., x}is a basis for P,, we see that dim(P,) = n + 1. =

The set E of matrices E;; in Illustration 2 is a basis for the vector space M,,,
of all m X n matrices, so dim(/,,,) = mn. =

By the same arguments that we used for R" (page 132}, we see that for a
finitely generated vector space V, every independent set of vectors in ¥ can be
enlarged, if necessary, to a basis. Also, if dim(V) = k, then every independent
set of k vectors in Vis a basis for V, and every set of k vectors that span Vis a
basis for V. (See Theorem 2.3 on page 133.)

Determine whether S’ = {1 — x, 2 — 3x?, x + 2x%} is a basis for the vector space
P, of polynomials of degree at most 2, together with the zero polynomial.
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We know that dim(P,) = 3 because {1, x, X’} is a basis for P,. Thus S will be a
basis if and only if § is an independent set. We can rewrite the dependence
relation format

r(l—x)+sQ2 -3 +t(x+2x)=0
as -
(r+ 291+ (=r+ O)x + (=35 + 26)x* = 0.

Because {1, x, X} is independent, this relation can hold if and only if

r+ 2s =0
-r + =0
—3s+2t=0.

Reducing the coefficient matrix of this homogeneous system, we obtain

-1 0 1{~[0 2 1]|~[01
0-3 2] [0-3 2] [po

R~ B —

120120120]

We see at once thai the homogeneous system with this coefficient matrix
has only the trivial solution. Thus no dependence relation exists, and so
S is an independent set with the necessary number of vectors, and is thus
a basis. =

Find a basis for the vector space P, (polynomials of degree at most 3, and 0)
containing the polynomials x* + 1 and x* — 1.

First we observe that the two given polynomials are independent because
neither is a scalar multiple of the other. The vectors

X+ Lx—-1,1,x x X

generate P, because the last four of these form a basis for P;. We can reduce
this list of vectors to a basis by deleting any vector that is a linear combina-
tion of-others in the list, being sure to retain the first two. For this ex-
ample, it is actually easier to notice that surely x is not in sp(x? + 1, x* — 1)
and X’ isnot insp(x® — 1, x> + 1, x). Thus the set {x* + 1, x2 — 1, x, x*} is inde-
pendent. Because dim (P;) = 4 and this independent set contains four vectors,
it must be a basis for P,. Alternatively, we could have.deleted 1 and x by
noticing that

L= a0+ 1) =52~ 1) and = %(xz )+ %(xl s
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SUMMARY

1. A subset W of a vector space ¥ is a subspace of V if and only if it is
noncinpty and satisfies the two closure properties:

v + w is contained in W for all vectors v and w in W, and
rv is contained in W for all vectors v in W and all scalars r.

2. Let X be a subset of a vector space V. The set sp(X) of all linear
combinations of vectors in X is a subspace of ¥ called the span of X, or the
subspace of V generated by the vectors in X. It is the smallest subspace of ¥
containing all the vectors in X.

3. A vector space V is finitely generated if V = sp(X) for some set X =
{vi, v, . . ., ¥ containing only a finite numbcr of vectors in V.

4. A set X of vectors in a vector space V'is linearly dependent if there exists a
dependence relation

rv,+ny,+ 4y =0 atleastoner;# 0,

where each v; € X and each r; € R. The set X is linearly independent if no
such dependence relation exists, and so a linear combination of vectors in
X is the zero vector only if all scalar coefficients are zero.

5. A set B of vectors in a vector space V'is a basis for V if B spans ¥ and is
independent.

6. A subset B of nonzero vectors in a vector space V'is a basis for Vif and only
if every nonzero vector in ¥ can be expressed as a linear combination of
vectors in B in a unique way.

7. If X is a finite set of vectors spanning a vector space ¥, then X can be
reduced, if necessary, to a basis for ¥ by deleting in turn any vector that
can be expressed as a linear combinaiion of those remaining.

8. If a vector space ¥ has a finite basis, then all bases for ¥ have the same
number of vectors. The number of vectors in a basis for V'is the dimension
of ¥, denoted by dim(V).

9. The following are equivalent for # vectors in a vector space ¥ where
dim(¥) = n.
a. The vectors are linearly independent.
b. The vectors generate V. N
EXERCISES
In Exercises 1-6, determine whether the indicated the vector space P of all polynomials with
subset is a subspace of the given vector space. coefficients in R
2. The set of all polynomials of degree 4
1. The set of all polynomials of degree greater together with the zero polynomial in the

than 3 together with the zero polynomial in vector space P of all polynomials in x
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3. The set of all functions f'such that f(0) = |
in the vector space F of all functions
mapping R into R

4. The set of all functions f'such that f(1) = 0
in the vector space F of all functions
mapping R into R

5. The set of all functions fin the vector space
W of differentiable functions mapping R
into R (see Illustration 6) such that f'(2) = 0

6. The set of all functions /'in the vector space
W of differentiable functions mapping R
into R (see INustration 6) such that fhas
derivatives of all orders

7. Let F be the vector space of funciions
mapping R into R. Show that
a. sp(sin’x, cos®x) contains all constant

functions, -
b. sp(sin’x, cos’x) contains the function

cos 2x, .
¢. sp(7, sin®2x) contains the function

8 cos 4x.

8. Lei P be the vector space of polynomials.
Prove that sp(1, x) = sp(I + 2x, x). [HiNT:
Show that each of these subspaces is a subset
of the other.]

9. Let Vbe a vector space, and let v, and v, be
vectors in V. Follow the hint of Exercise 8 to
prove that
a. sp(v;, Vo) = sp(vy, 2v, + ¥,),

b. sp(v, v;) = sp(¥, T V5, ¥, ~ ¥y).

10. Letv,v,,...,v,and w,, w,, ... w,be
vectors in a vector space V. Give a necessary
and sufficient condition, involving linear
combinations, for

SP(Yi, ¥V, - oo, V) = SP(W), Wy, . .., W,).

In Exercises 11-13, determine whether the given
set of vectors is dependent cr independent.

11, X — I, x>+ 1,4x,2x - 3}in P
12 {I,4x+3,3x -4, x3+ 2, x—x}in P
13. {1, sin’x, cos 2x, cosix} in F

In Exercises 14-19. use the technique discussed
iHilowing Example 3 to determine whether the
e e { functions in the vector space F is
dependent or dependent.

14, {sin x, cos x}

15. {1, x, x%

16. {sin x, sin 2x, sin 3x}
17. {sin x, sin(~x)}

18. {e™ ¥ o*}

19. {Let+ e o7~ ¢}

In Exercises 20 and 21, determine whether or not
the given set of vectors is a basis for the indicated
vector space.

20. {x, X + 1, (x — 1)} for P,
2L {x, e+ 12, (x -+ 1)} for P,

In Exercises 22-24, find a basis for the given
subspace of the vector space.

22, sp(x — 1, x2 + 1,4,2x ~ 3) iu P

23. sp(l,4x +3,3x ~ 4, X + 2, x — x%) in P

24. sp(1, sinx, cos 2x, cosix) in F

25. Mark each of the following True or False.

—— a. The set consisting of the zero vector is a
subspace for every vector space.

. Every vector space has at least two
distinct subspaces.

. Every vector space with a nonzero vector
has at least two distinct subspaces.

« If{v,, vy ..., v} is a subset of a vector

space V, then v, is in sp(v,, v,, . . .

i=1,2,...,n

If{v, v, ..., v} is a subset of a vector

space V, then the sum v, + v is in

SP(Vy, Yo, . . . , ¥,) for all choices of i and |

from I to n.

[fu + v lies in a subspace W of a vector

space V, then both u and v lie in W,

. Two subspaces of a vector space V may
have empty intersection.

be expressed uniquely as a linear
combination of vectors in S.

i. If.S'is independent and generates ¥, each
vector in ¥ can be expressed uniquely as
a linear combination of vectors in .S,

j. If each vector in ¥ can be expressed
uniquely 2s a linear combination of
vectors in S, then S is an independent set.

- If §'is independent, each vector in ¥ can 3

R R i v i ik

,v,) for




26. Let V be a vector space. Mark each of the

following True or False.
___a. Every independent set of vectors in V¥
is a basis for the subspace the vectors
span.
b. If{v,, v5, ..., v,} generates ¥, then each
v € Vis a linear combination of the
vectors in this set.
c. If{v,, v,, ..., v,} generates V, then each
v € Vis a unique linear combination of
the vectors in this set.
d. If{v;, v;, ..., v,} generates ¥ and 1s
independent, then each v € Vis a unique
linear combination of the vectors in this
set.
e. If{v,, v, ..., v,} generates V, then this
set of vectors is independent.
f. If each vectorin Vis a unique linear
combination of the vectors 1n the set
{vi, ¥, . . ., v}, then this set is
independent.
__g. If each vector in V' is a unique linear
combination of the vectors in the set
{vi, V5 ..., v,}, then this set is a basis
for V.
h. All vector spaces having a basis are
finitely generated.
___i. Every independent subset of a finitely
generated vector space V is a part of
some basis for V.

___}. Any two bases in a finite-dimensional
vector space ¥ have the same number of
elements.

27. Let W, and W, be subspaces of a vector
space V. Prove that the intersection
W, N W, is also a subspace of V.

28. Let W, =sp((1,2,3),(2, |, )) and W, =
sp((1, 0, 1), (3, 0, —1)) in R*. Find a set of
generating vectors for W, N W,.

29. Let V be a vector space with basis {v,, vy, v3}.
Prove that {v, v, + v, v, + v, + vjjisalso a
basis for V.

30, Let ¥ be a vector space with basis
vy vy ..., v}, and let W=
Sp(¥s, Yoy . . ., V). If W =1y, + 1y, is
in W, show that w = 0.

31. Let {v,, v;, v} be a basis for a vector space V.
Prove that the vectors w, = v, + v, w, =
v, + v3, wy = v, — v, do not generate V.
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33.

34.

3s.

36.

37.

38.

39.

. Let {v, v, v,} be a basis for a vector space V.

Prove that, if w is not in sp{v;, v»), then
{v,, v, w} is also a basis for V.

Let {v,, v, . ...v,} be a basis for a vector
space ¥, and letw = (¥, + Ly, + -+ +
4, with £, # 0. Prove that

(V0 Vo o oo Viets W Vit « « 5 V)
is a basis for V.

Let Wand U be subspaces of a vector space
V,and let W N U= {0}. Let {w,, Wy, . .., W}
Le a basis for W, and let {u;, u,, . . ., u,} be
a basis for U. Prove that, if each vector v in
Vis expressible in the form v = w + u for

w € Wand e € U, then

{wh w27 teey wk) ul: uls ey um}'
is a basis for V.

Tllustrate Exercise 34 with nontrivial
subspaces W and U of R’

Prove that, if W is a subspace of an
n-dimensional vector space ¥ and
dim(W) = n, then W = V.

Let v, v,, ..., v, be alist of nonzero vectors
in a vector space ¥ such that no vector in
this list is a linear combination of its
predecessors. Show that the vectors in the
list form an independent set.

Exercise 37 indicates that a finite generating
set for a vector space can be reduced to a
basis by deleting, from left to right in a list
of the vectors, each vector that is a linear
combination of its predecessors. Use this
technique to find a basis for the subspace

sp(* + 1, X2+ x—1,3x - 6,
x3+x2+ 1,x1)

of the polynomial space P.

We once watched a speaker in a lecture
derive the equation f{x) sin x + g(x) cos x =
0, and then say, “Now everyone knows that
sin x and cos x are independent functions,
so flx) = O and g(x) = 0.” Was the
statement correct or incorrect? Give a proof
or a counterexample.
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40. A homogeneous linear nth-order differential
equation has the form

SYO + Loy + e+ Syt +
L0y + fifx)y = 0. :

Show that the set of all solutions of this
equation that lie in the space F of all
functions mapping R into R is a subspace
of F.

41. Referring to Exercise 40, suppose that the
differential equation

FOP + L@y + -+ fily” +
: L)Y + fx)y = gx)

does have a solution y = p{x) in the space F
of all functions mapping R into R. By
analogy with Theorem 1.18 on p. 97,
describe the structure of the set of solutions
of this equation that lie in F.

42. Solve the differential equation y’ = 2x and
describe your solution in terms of your
answer to Exercise 41, or in terms of the
answer in the back of the text.

It is a theorem of differential equations that if
the functions f{x) of the differential equation in
Exercise 40 are 21l constant, then all the
solutions of the equation lie in the vector space F
of all functions mapping R into R and form a
subspace of F of diménsion n. Thus every
solution can be written as a linear combination
of n independent functions in F that form a basis
for the solution space.

T A

In Exercises 4345, use your knowledge of
calculus and the solution of Exercise 41 to
describe the solution set of the given differential
equation. You should be able to work these
problems without having had a course in
differential equations, using the hints.

43.

44.

45,

46.

47.

a. y" + y = 0 [Hint: You need to find two
independent functions such that when
you differentiate twice, you gst the
negative of the function you started with,]

b. ¥ + y = x [HiNT: Find one solution by
experimentation.}

a. y" — 4y = 0 [Hnt: What two
independent functions, when
differentiated twice, give 4 times the
original function?} ,

b. y” — 4y = x [HinT: Find ore solution by
expcrimentation. ]

B

a. y® — 9y’ = 0 [HinT: Try tc find values of
m such that y = ¢™ is a solution.] '

b. y® — 9y’ = x? + 2x [HinT: Find one
solution by experimentation.]

Let S be any set and let F be the set of all

functions mapping .S into R. Let W be the

subset of F consisting of all functions f€ F

such that f{s) = 0 for all but a finite number

of elements s in S.

a. Show that W is a subspace of F.

b. What condition must be saiisfied to have
W =F?

Referring to Exercise 46, describe a basis 8

for the subspace W of F. Explain why B is

not a basis for F unless F = W.

COORDINATIZATION OF VECTORS

Much of the work in this text is phrased in terms of the Euclidean vector.
spaces R” for n = 1, 2, 3,.... In this section we show that, for finite-
dimensional vector spaces, no loss of generality results from restricting’
ourselves to the spaces R". Specifically, we will see that if a vector space ' has 23
dimension n, then ¥ can be coordinatized so that it will look just like R". We '3
can then work with these coordinates by utilizing the matrix techniques we 3
have developed for the space R™. Threughout this section, we consider ¥ tobea
finite-dimensional vector space.
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Ordered Bases

The vector [2, 5] in R? can be expressed in terms of the standard basis vectors
as 2e, + Se,. The components of [2, 5] are precisely the coefficients of these
basis vectors. The vector [2, 5] is different from the vector [5, 2], just as the
point (2, 5) is different from the point (5, 2). We regard the standard basis
vectors as having a natural order, e, = [1, 0] and e, = [0, 1. In a nonzero vector
space ¥ with a basis B = {b,, b,, . . ., b,}, there is usually no natural order for
the basis vectors. For example, tle vectors b, = [—1, 5] and b, = [3, 2] form a
basis for R?, but there is no natural order for these vectors. If we want the
vectors to have an order, we must specify their order. By convention, set
notation does not denote order; for example, {b,, b} = {b,, b;}. To describe
order, we use parentheses, ( ), in place of set braces, { }; we are used to
paying attention to order in the notation (b,, b,). We denote an ordered basis of
n vectors in V'by B = (b, b,, ..., b,). For example, the standard basis
{e;, &,, &5} of 3 gives rise to six different ordered bases—namely,

(e, e €5) (e, €, €5) (e €,€) (e e5€) (eye5€) (e e, e)

These correspond to the six possible orders for the unit coordinate. vectors.
The ordered basis (e,, €,, &;} is the standard ordered basis for R* and in general,
the basis E = (e, ¢, . . ., &,) is the standard ordered basis for R".

Coordinatization of Vectors

Let ¥ be a finite-dimensional vector space, and let B = (b, b, ..., b,) be a
basis for V. By Theorem 3.3, every vector v in ¥ can be expressed in the form

v=rb +rbh + - +rb

for unique scalars ry, r,, . . . , ,. We associate the vector [r,, 75, . . ., r,] in R*
with v. This gives us a way of coordinatizing V.

DEFINITION 3.8 Coordinate Vector Relative to an Ordered Basis

: b,,)b an‘ordered basis for a finite-dimensional

+ s+ rb,.

The vector [r,, 'rz, .. oofﬂiﬁéfe vector of v relative to the

ordered basis B, and is denote

ILLUSTRATION 1  Let P, be the vector space of polynomials of degree at most n. There are two
natural choices for an ordered basis for P,—namely,

B=(1,x,x%...,x) and B' = (x",x"',...,x,x 1)
Taking 7 = 4, we see that for the polynomial p(x) = —x + x* + 2x* we have
px);=10,-1,0,1,2] and p(x), =1[2,1,C —1,0L s
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i il

EXAMPLE 1 Find the coordinate vectors of [1, —1] and of [ 1, 8] relative to the ordered
basis B = ([1, —1], 1, 2]) of R~

SOLUTION  We see that [1, ~1], = [1, 0], because

[1, =17 = 1{1, =1] + 0[1, 2.

To find [~1, ~8], we must find r, and r, such that [~ 1, —8] = r,[1, —=1] +
f, [1, 2]. Equating components of this vector equation, we obtain the linear

system
nt rp=-1
—r, + 2, = =8.
The solution of this system is r, = 2, r, = —3, so we have [ 1, 8]; = [2, —3].

Figure 3.1 indicates the geometric meaning of these coordinates. ™

EXAMPLE 2 Find the cocrdinate vector of [1, 2, —2] relative to the ordered basis B =
(1,1, 1), [L, 2,0}, [1, 0, 1]) in R,

SOLUTION  We must express [1, 2, —2] as a linear combination of the basis vectors in B..
Working with column vectors, we must solve the equation

11 1 1 1
n(l{+nr|2+n0= 2
1 0 1 -2

x2

—i~ 8j = 2b, - 3b,

FIGURE 3.1
[—1, -8l =[2, -3].
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for r,, r,, and r;. We find the unique solution by a Gauss-Jordan reduction:

rrr)t v gl
120 2(~(0 1 -1 1
101(-2] |01 0|3
1 0 2i0|] [to0]|-4
~10 1 -1| 1|~|0 10| 3|
0 0-1]|-2 061 2

Therefore, [1, 2, =2];=[~4,3,2]. =

We now box the procedure illustrated by Example 2.

Coordinatization of a Finite-Dimensional Vector Space

We can coordinatize a finite-dimensional vector space V by selecting an
ordered basis B = (h,, b,, ..., b,) and associating with each vector in V its
unique coordinate vector relative to B. This gives a one-to-one correspondence
between all the vectors in ¥and all the vectors in R". To show that we may now
work in R” rather than in ¥V, we have to show that the vector-space operations
of vector addition and scalar multiplication in V are niirrored by those
operations on coordinate vectors in R”. That is, we must show that

(v+twy=v,+w, and (tv)y = tv; 8}
for ail vectors v and w in ¥ and for all scalars £ in R. To do this, suppose that
v=rb +rb,+-+-+rh,

and
w=gsb + ;vzbz + 4 5b,

Because

v+tw={(r+s)h +(p+s)h+ -+ (,+s)b,
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we see that the coordinate vector of v + w is

(V+W)B=[rl+shr2+s2"">rn+sn]
:[rhrb""rn]+[shs2:"':sn]
:vB+wB:

which is the sum of the coordinate vectors of v and of w. Similarly, for any
scalar ¢, we have

tv=Hrb, + b+ -+ +rb)
= (lrl)bl + ([rl)bl +o--rt (Zrn)bm

so the coordinate vector of tv 13

(tv)g = 1try, tryy - ., 11,]
=Hry Ty, 1] = MY
This complétes the demonstration of relaticns (1). These relaticns tell us that,
when we rename the vectors in ¥ by coordinates relative to B, the resulting
vector space of coordinates—namely, R"—has the same vector-space struc-
ture as V. Whenever the vectors in a vector space ¥ can be renamed to make V
appear structurally identical to a vector space W, we say that ¥ and W are
isomorphic vector spaces. Our discussion shows that every real vector.space
having a basis of n vectors is isomorphic to R*. For example, the space P, of ail
polynomials of degree at most # is isomorphic to R™*!, because P, has an
ordered basis B = (x", x"', ..., x4 x, 1) of n + 1 vectors. Each polynomial

ax"+a, X"+ Fax+ g
can be renamed by its coordinate vector
[@n Guys - - -5 Gy, Q)

relative to B. The adjective isomorphic is used throughout algebra to signify
that two algebraic structures are identical except in the names of their
elements.

For a vector space ¥ isomorphic to a vector space W, all of the algebraic
properties of vectors in ¥ that can be derived solely from the axioms of a
vector space correspond to identical properties in W. However, we cannot
expect other features—such as whether the vectors are functions, matrices, or
n-tuples—to be carried over from one space to the other. But a generating set
of vectors or an independent set of vectors in one space corresponds to a set
with the same property in the other space. Here is an example showing how we
can simplify computations in a finite-dimensional vector space V, by working
instead in R".

Determine whether x* — 3x + 2, 337 + S5y — 4, and 7xX? + 21x — 16 are
independent in the vector space £, of polynomials of degree at most 2.
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SOLUTION We take B = (¥, x, 1) as an ordered basis for P,. The coordinate vectors

EXAMPLE 4

SOLUTION

relative to B of the given polynomials are

(= 3x+2), =11, -3,72],
(3 + 5x — 4), = 3 5, —4],
(T + 21x = 16), = [7, 21, —16].

We can determine whether the polynom1als are independent by determining
whether the corresponding coordinate vectors in R’ are independent. We set
up the usual matrix, with these vectors as column vectors, and then we
row-reduce it, obtaining

1 3 7 1 3 7 137
-3 5 21|~|0 14 42|~|0 1 3.
2 -4 —-16 0 -10 -30] (000

Because the third column in the echelon form has no pivot, these three
coordinate vectors in R® are. dependent, and so the three polynomials are

dependent. =

Continuing Example 3, to further illustrate working with coordinates in
R", we can reduce the final matrix further to

1 0 -2
6 1 3.
00 0

If we imagine a partition between the second and third columns, we see that
[7,21, —16] = —2[1, =3, 2] + 3[2, 5, —4].
Thus
Ixt+ 21x — 16 = =2(x* = 3x + 2) + 3(3x* + 5x — 4).

It can be shown that the set {1, sin x, sin 2x, .. ., sin nx} is an independent
lhaagy

subset of the vector space F of all functions mapping R into R. Find a basis for
the subspace of F spanned by the functions

fi() = 3 = sin x + 3 sin 2x ~ sin 3x + 5 sin 4x,

f{x) =1+ 2sinx + 4 sin 2x — sin 4x

fi{(x)= -1+ 5sinx + 5sin 2x + sin 3x — 7 sin 4x

fix) = 3 sin 2x — sin 4x.

We see that all these functions lie in the subspace W of F given by W =
sp(1, sin x, sin 2x, sin 3x, sin 4x), and we take

B = (1, sin x, sin 2x, sin 3x, sin 4x)
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EXAMPLE 5

SOLUTION

expressing the vector [1, 1, —1, —1] as a linear combination of the vectors -

VECTOR SPACES

as an ordered basis for this subspace. Working with coordinates relative to B,
the problem reduces to finding a basis for the subspace of R* spanned by
3, -1,3,~1,5),1,2,4,0,-1],[-1, 5,5, 1, =7],and [0, 0, 3, 0, —1]. We
reduce the matrix having these as column vectors, and begin this by switching
minus the fourth row with the first row to create the pivot 1 in the first column
We obtain

3 1-1 0 I 0-1 0 1 0-1 0 1 0-1 0
-1 2 5 0/ |0 2 4 0 (0 1 2 0 01 2 0
({3 4 5 3/ ~/10 4 8 3/~|10 0 0 3/~/0 00 1)
[—10 1 0 |0 t 2 0 |0 0 0 O 0 0 0 O

S ~1 -7 -1 0-1-2-1 0 0 0-1 0 0 0 O

Because the first, second, and fourth columns have pivots, we should keep the
first, second, and fourth of the original column vectors, so that the set
{1(x), /,0, fy(x)} is a basis for the subspace W. =

We give an example showing the uiility of different bases in the study of
polynomial functions. We know that a polynomial function

y=px)=ax"+ - +axt+ax+a

has a graph that passes through the origin if g, = 0. If both 4, and q, are zero, 3
then the graph not only goes through the crigin, but is quite flat there; indeed, 3
if a, # 0, then the function behaves approximately like a,x? very near x = 0,
because for very small values of x, such as 0.00001, the value of x? is much
greater than the values of X3, x*, and other higher powers of x. If @, = 0 also, but 3
a, # 0, then the function behaves very much like a,x for such values of x very 3§
close to 0, etc. If instead of studying a polynomial function near x = 0, we want

to study it near some other x-value, say near x = g, then we would like to %
express the polynomial as a linear combination of powers (x — a)’—that is, 3

p(x) =b(x —af + - -+ + b(x — af + by(x - a) + by

Both B =(x",...,x, x, )and B = ((x - @), ...,(x — a)’, x — a, 1) ar¢ 3

ordered bases for the space P, of polynomiais of degree at most n. (We leave the
demonstration that B’ is a basis as Exercise 20.) We give an example 3
illustrating a method for expressing the polynomial x* + x* — x — 1 asa lmear
combination of (x + 1), (x + 1), x + l,and I. -

Find the coordinate vector of >p(x) = x' + x* — x — | relative to the ordered 3§
basis B’ = ((x + 1)% (x + 1), x + 1, 1).

Muitiplying out the powers of x + 1, to express the vectorsin B’ in terms of our 3
usual ordered basis B = (x, x2, x, 1) for P;, we see that

=+ 32+ 3+ L, + 2+ Lx+ 1)

Using coordinates relative to the ordered basis B, our problem reduces to
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[1,3,3, 1,00, 1,2,1],[0,0, 1, 1], and
corresponding to the assoclated linear syst

000 |

—

0, 0, 0, 1]. Reducing the matrix
m, we obtain

XAxXr—x— 1=+ 1P-2x+ 12 =

(1]

o

i !
-2 2|

—Ud LD =

000 00 0
100 00 0
210 10 1
111 11 0

_——0 O O
OONH

0
1
0
0

OO = O
OOO——*

i
0
10
0

|
——
co o~

100
210|-
111

—
|
N

0

Thus the required coordinate vector is p(x); = [1, =2, 0, 0], and so

Linear algebra is not the only tool that can be used to solve the problem in
Example 5. Exercise 13 suggests a polynomial algebra solution, and Exercise
16 describes a calculus solution.

LSU MMARY -

Let V be a vector space with basis {b,, b,, . . ., b}.

1. B=(b,b,, ...,b,)isanordered basis; the vectors are regarded as being in
a specified order in this n-tuple notation.

2. Each vector v in ¥ has a unique expression as a linear combination:
- v=rb +nb,+ - +rb,.
3. Thevectorvy=[r,r, ...,r,) for the uniquely determined scalars 7;in the

preceding equation (summary item 2) is the coordinate vector of v relative
to B.

4. The vector space ¥ can be coordinatized, using summary item 3, so that V'

is isomorphic to R,

| EXERCISES

In Exercises 1-10, find the coordinate vector of 7. xX* 4+ x* — 2x + 4 in P, relative to
the given vector relative to the indicated ordered (1, x4, x, x*)

8. x*+ 3x* — 4x + 2 in P, relative to

1. [~1, 1] in R relative to ([0, 1], 1, 0]) (x, x* = 1, X, 2xY)
2. [-2, 4] in R? relative to ([0, —2], [—%, 0] 9. x+x'in P, gelative to3 2
3. [4, 6, 2] in R® relative to (1, 2x = 1,x* + 2, 200, X + 2)
(2,0, 01,0, 1, 1L 10, 0, i) 10. [1 —2] in M, relative to
4. [4, -2, 1] in R® relative to 3 4
(0, 1, 1], 12,0, 0], [0, 3, O]) 01770 =171 —177]0 1
i 5. [3, 13, —1] in R’ relative to ‘ ([1 0]’ [0 0}’ [0 3]’ [0 1])
(L, 3,-2],[4, 1,3}, [-1, 2, 0]) 11. Find the coordinate vector of the polynomial
3 6. [9, 6, 11, 0] in R relative to ([1, 0, 1, 0], X —-4x+3x+7 relat;ve to the ordered

| 2,11, -1, 10, 1,

L =102, 1,3, 1] basis B = ((x — 2), (x — 2)%, (x — 2), ) of
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the vector space P; of polynomials of degree fix)=1-2sinx +4ccsx —sin2x -

at most 3. Use thc method illustrated in 3 cos 2x,

Example 5. SH(x¥)=2—-3sinx —cosx+ 4sin2x +
12. Find the coordinate vector of the polynomial 5 cos 2x

4x% - 9x* + x relative to the ordered basis
B =((x 1), (x = 1y, (x — 1), 1) of the
vector space P; of polynomials of degree at

Si(x)=5—-8sinx +2cosx+
7 sin 2x + 7 cos 2x

most 3. Use the method illustrated in Six)= -1+ tdcos x — 11 sin 2x —
Example 3. 19 cos 2x

13. Example 5 showed how to use linear algebra 20. Prove that for every positive integer n and :
1o rewrite the polynomial p(xj = x* + x? — every a € R, the set
x =1 in powers of x + 1 rather than in o 2 ;

o x—a,x-a""...,(x~a}x—al}

powers of x. This exercise indicates a { i ) ( ) !
polynorial aigebra sclution to this problem. is a basis for the vector space P, of
Replace x in p(x) by [(x + 1) — 1], and polynomials of degree at most 7.
expand using the binomial theorem, keeping 21. Find the polynomial in P, whose coordinate
the (x + 1) intact. Check your answer with vector rclative to the ordered basis B =
that in Example 5. x+xhx=-x,1+x)is[3, 1,2].

14. Repeat Exercise 11 using the pslynomial 22. Let ¥ be a nonzero finite-dimensional vector
algebra method indicated in Exercise 13. space. Mark each of the following True or

False.
__ a. The vector space ¥ is isomorphic to R"
for some positive integer 7.

15. Repeat Exercise !2 using the polynomial
algebra method indicated in Exeicise 13.

16. Example 5 showed how to use linear algebra ___b. There is 3 unique coordinate vector
to rewrite the polynomial p(x) = x* + x* - associated with each vector v € V.
x — lin powers of x +_1 r.ath‘er than in — c. There is a unique coordinate vector
powers of x. This exercise indicates a associated with each vector v € V relative
calculus solution to this problem. Form the to a basis for V.
equauion _d. There is a unique coordinate vector
XA —x =1 =bx+ 1P+ bx+ 17 + associated with ea-ch vector v € V relative
b(x + 1) + b, to an ordered ba§1s for V. o
_ e, Distinct vectors in ¥ have distinct
Find b, by substituting x = —1 in this coordinate vectors relative to the same
equation. Then equate the derivatives of ordered basis B for V.
both sides, and substitute x = -1 to find __ f. The same vector in ¥ cannot have the
bl' Continue diﬁerentiating both sides same coordinate vector relative to
and substituting x = —1 to find b, and different ordered bases for V.
by. Check your answer with that in ___ g. There are six possible ordered bases for
Example 5. R3.
17. Repeat Exercise 11 using the calculus — h. There are six possible ordered bases for
method indicated in Exercise 16. R, consisting of the standard unit

coordinate vectors in R’

__ i. A reordering of elements in an ordered
basis for ¥ corresponds to a similar

19. a. Prove that {l, sin x, cos x, sin 2x, cos 2x} reordering of components in coordinate
is an independent set of functions in the vectors with respect to the basis.
vector space F of all functions mapping R ___ j. Addition and multiplication by scalars in
into R. }"can be computed in terms of

b. Find a basis for the subspace of ¥ ccordinate vectors with respect to any

generated by the functions fixed ordered basis for V.

18. Repeat Exercise 12 using the calculus
method indicated in Exercise !6.
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LINEAR TRANSFORMATIONS

Linear transformations mapping R” into R™ were defined in Section 2.3. Now
that we have considered vectors in more general spaces than R”, it is natural to
extend the notion to linear transformations of other vector spaces, not
necessarlly finite-dimensional. In this section, we introduce linear transforma-
tions in a general setting. Recall that a lmear transformation 7: R*— R™isa
function that satisfies

T(u + v) = T(u) + T(v) (1)
and

for all vectors u and v in R” and for all scalars .

Linear Transformations T: V — V'

The definition of a linear transformation of a vector space ¥ into a vector
space V' is practically identical to the definition for the Euclidean vector
spaces in Section 2.3. We need only replace R” by ¥V and R™ by V.

DEFINITION 3.9 Linear Transformation

. functlon T tha_ meps, a vector space . tho a vector space V’ 1s a
linear transformahen xf 1t satisfies- two criteria: - :

Exercise 35 shows that the two conditions of Definition 3.9 may be
combined into the single condition

T(ru + sv) = rT(w) + sT(v) )

far all vectors w and v in ¥ and for all scalars r and s in ®. Mathematical
induction can be used to verify the analogous relation for n summands:

T(rlvl + r2v2 + et rnvn) = rlT(vl) + r2T(v2) +oect rnT(vn)' (4)

We remind you of some terminology and notation defined in Section 2.3
for functions in general and linear transformations in particular. We state
things here in the language of linear transformations. For a linear transforma-
tion T: V— V', the set Vis the domain of T and the set V' is the codomain of T,
If Wis a subset of ¥, then T[W] = {T(w) | w € W}is the image of ¥ under T.
In particular, 7[V] is the range of 7. Similarly, if /' is a subset of ¥, then
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SOLUTION

EXAMPLE 2
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T[W'] = {v € V| T(v) € W'} is the inverse image of W’ under T. In
particular, 7'[{0'}] is the kernel of T, denoted by ker(T'). It consists of all of
the vectors in V¥ that 7 maps into 0.

~LetV, V', and V" be vector spaces, andlet T: V— V" and T": V' — V" be
linear transformatioss. The composite transformation 7" o T V— V" is defined
by (T" ° F)(v) = T'(T{v)) for v in V. Exercise 36 shows that.7T" o T is again a
linear transformation.

Let Fbe the vector space of all functions £ R — R, and let D be its subspace of
all differentiable functions. Show that differentiation is a linear transforma-
tion of D into F.

Let T: D — Fbe defined by T(f) = f”, the derivative of £ Using the famxhar
rules
(f+& =1 +g and {Ify =r{]")
for differentiation from calculus, we see that
f+o=(+g =+ =T/)+ T
and
Tuf) = (of Y = i(/") = rT{f)

for all functions fand g in D and scarlars r. In other words, these two rules for
differentiating a sum of functions and for differentiating a scalar times a
function constitute 